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Abstract. The modeling of transonic flow using a pressure based solver is here tackled

with the PISO method, in particular with the rhoPISOFoam code. This code has been

applied for a wide range of Mach numbers in order to evaluate its limits under high

speed flow conditions. Computations are obtained for canonical geometries and the results

are compared with those obtained with the FLUENT code, in regard to efficiency and

computing cost. Most results to be discussed are for the prototypical geometry of a channel

with a semicircular bump. In view of the good results obtained with rhoPISOFoam we

decided to implement a new algorithm capable of solving compressible MHD flows. Flow

fields obtained using a transverse magnetic field under a constant electric potential wall

turned out to exhibit attenuation of the shock wave, allowing for a better recuperation of

the flow downstream of the bump. We also present results for a blunt body MHD flow. A

bow shock is computed for a supersonic flow impinging on a perfectly conducting cylinder

with, and without, an applied magnetic field. We see this new solver as an initial step

into modeling MHD compressible flows, such as those existent in MPD thrusters.
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1 INTRODUCTION

In order to develop high-power space propulsion systems research has been targeted
toward the acceleration of plasma flows, namely for efficient conversion of exit enthalpy
in MPD thrusters1. The Eulerian field Mach number can assume values ranging from
the very low subsonic to the order of 10. In Applied-Field MPD2 thrusters the plasma
flows are accelerated by an imposed magnetic field. To completely describe a plasma
motion we must rely on kinetic equations for each of the plasma species. However, to
model MPD thrusters this approach is often too costly and therefore herein we resort to
a fluid description of the plasma. This is usually done by solving the MHD equations
using a single fluid approach based either on a one or two temperature model, for ions
and electrons. The mathematical model presented in this work comprises the solution of
the single fluid resistive MHD equations. In spite of being one of the simplest models to
describe this class of flows, it is one of the approaches that has been met with most success
when applied to simulate the physics of these propulsion engines. Therefore here whe shall
solve the gas dynamic equations coupled to the magnetic field induction equation.

For compressible flows one of the most popular approaches is to solve the governing
equations in conservative variables using a finite volume method. But inside realistic
geometries the flowfield can assume values ranging from the low subsonic to the hypersonic
limit. For classical gas dynamics, the use of standard density based methods to model
low Mach number flowfields usually implies a reduction in the numerical efficiency, due to
the increased stiffness of the equations and weak coupling between density and pressure.
This has been often mitigated by using low Mach-preconditioning3, but that implies an
additional computational cost.

Alternatively, to tackle flows at all speeds, finite volume segregated pressure based
solvers have been applied. These were initially developed for incompressible flow us-
ing the SIMPLE pressure-velocity coupling algorithm, however they have already been
proved as capable of handling flows in all flow regimes, including computing shock wave
discontinuities4. Herein we will consider the PISO variant5,6. Various versions have been
developed to compute compressible flow, mainly differing in the formulation for the pres-
sure equation. Further, and as a way to reduce the computing time, this pressure-velocity
coupling algorithm has been reformulated to achieve faster execution time in a parallel
computing framework7. The algorithm used in the present computations is applied on
the OpenFOAM-Open Field Operation and Manipulation toolbox8,9. A brief review of
the algorithm will be given in section 3. Further, we will present computations that allow
us to verify the ability of the code to compute transonic and supersonic flows with shock
wave discontinuities.

The computation of high speed flowfields using an MHD formulation is further com-
plicated by the imposition of a magnetic field. A consequence of Faraday’s law is that
an initially divergence free magnetic field leads to a divergence free magnetic field at all
times. This is reflected on the absence of observations of magnetic monopoles in nature.
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This solenoidal property is expressed as ∇·B, and presents one of the main challenges to
be taken into considerations when modeling MHD plasma flows3,10.

The present work includes a complete description of the governing equations in Section
2, the presentation of the numerical algorithm developed to compute MHD compressible
flows in Section 3, a presentation of two test cases used to check the code in Section 4,
and finally a conclusions section.

2 GOVERNING EQUATIONS

We solve the MHD equations expressed in the conservative variables, density ρ, mo-
mentum vector ρU, total energy density ρe, and magnetic induction B. The system of
equations is given by,

∂ρ

∂t
+∇ · (ρU) = 0, (1)

∂ρU

∂t
+∇ · (ρUU) = −∇pI +∇ · τvisc + J×B, (2)

where τvisc is the viscous stress tensor and the last term in r.h.s, J×B, is the Lorentz
force. We now consider the Maxwell equations,

∇×H = J+
∂D

∂t
, ∇×E = −

∂B

∂t
, ∇ ·B = 0, ∇ · J = 0. (3)

The magnetic field intensity is H = B/µ0, and D is the displacement current that
is neglected for non-relativistic plasma computations. E is the electric field and J the
current density. Using vector identities and the Maxwell equations (3) we can replace this
force by a set of stresses:

J×B = ∇ ·

(

BB

µ0
−
B2

2µ0
I

)

, (4)

where I is the identity tensor. Now we can rewrite the momentum equation:

∂ρU

∂t
+∇ · (ρUU) = ∇ · τvisc −∇

(

p +
B2

2µ0

)

+∇ ·

(

BB

µ0

)

. (5)

The overall pressure is given by Pove. = p + B2/2µ0, in which the second contribution
corresponds to the magnetic pressure. This later acts like a pressure in the direction
transverse to the magnetic field, the magnetic field resists to compressibility just like the
fluid pressure. The term BB/µ0 in equation (5) is called the hoop stress and acts like a
tension along the lines of magnetic force, bearing some similarity with the viscous stresses.
It represents tension along field lines when they are curved, similar to the force exerted
by a stretched elastic band.
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Combining Faraday’s law ∇× E = −∂B
∂t

with the Ohm’s law, J = σ(E+U ×B), we
obtain

∂B

∂t
= ∇× (U×B) +

1

µ0σ
∇

2B, (6)

were the first term in the r.h.s. is the convective term and the second one is the diffusion
term. The relationship between these two terms allow us to obtain the magnetic Reynolds
number, Rm = µ0σLu, where µ0 is the magnetic permeability, σ is the conductivity, L
and u are the characteristic length and velocity respectively. This is a parameter that we
must considerer in the modeling assumptions for MHD flows. In the case of Rm ≤ 1 the
electromagnetic forces are ruled by the flowfield and the convective and dissipative terms
must be retained in the induction equation. In the case of a high magnetic Reynolds
number (Rm ≫ 1) we may neglected the diffusion term, but we end up with a strong
coupling, so the momentum, Ohm’s law, energy equation and induction equation cannot
be treated independently. For the case of a low magnetic Reynolds number (Rm ≪ 1) we
may neglected the convective term and we can treat each equation separately introducing
the contributions of the magnetic field only as a source term. In our case we will retain
the diffusion and convective terms in the induction equation, thus solving for the more
general case of a strong coupling between equations.

Additionally, and in particular for compressible MHD flows, we have to solve the energy
equation,

∂ (ρe)

∂t
+∇· (ρeU)+∇· (Pove.U)−∇· (α∇e)−

1

µ0
∇· (B (B ·U))−∇· (B× ηJ) = 0 (7)

Let us now concentrate in the last term of the equation, ∇·(B× ηJ), and ηJ = η
µ0
∇×B,

assuming a constant resistivity and that η = 1
µ0σ

this term can then be re-writen as:

∇ · (B× ηJ) = ∇ ·

[

1

µ0σ
(B× (∇×B))

]

= ∇
2

(

1

2µ2
0σ
B2

)

−
1

µ2
0σ

[∇ · (∇ · (BB))] (8)

This later is substituted in the last term of Eq. (7).
The numerical code will thus compute a solution to the compressible MHD flowfield

by solving Eq.s (1), (5), (6) and (7).

3 NUMERICAL MODEL

The algorithm herein presented will extend the incompressible MHD algorithm8, avail-
able in OpenFOAM, to compressible flow. The solution of the governing equations will
be obtained using a finite volume discretization that solves the equations in a segregated
approach. Thus, the flow variables will remain frozen as we solve for the other variables at
a given time step. The code solves for velocity, pressure, total energy, and magnetic field.
This procedure is sub-divided into two phases. In the first we solve a pressure equation
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Figure 1: Fluxogram corresponding to the new solver for MHD compressible flow.
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using the PISO implementation for all flow speeds6. On a second phase we solve for the
induction equation, further ensuring that the irrotationality condition ∇ ·B ≈ 0 is meet.
This later is accomplished using the projection method of Brackbill and Barnes10. The
flowchart of the coded algorithm is presented in Fig.1.

The implemented algorithm comprises the following steps:

1. Momentum predictor: The estimated values at the present time step for the velocity
field, U∗, are obtained by solving the momentum equation. The pressure gradient
and the magnetic field terms are treated in an explicit way, using the values of the
previous time step. This is an initial step before we start the PISO cycle.

2. Inside the PISO cycle we solve for the total energy, and afterwards the temperature
T is updated using a state equation;

T =
1

ρCv

[

ρe−
1

2
ρU2

−
1

2µ0
B2

]

. (9)

On the other hand the compressibility, ψ∗ = 1/RT ∗, and density, ρ∗ = ψ∗P , are
also estimated.

3. The operator H(U∗) is constructed by using the estimated values for velocity. This
term will be used for the solution of the pressure equation in the next step. The
magnetic field values are taken from the previous time step.

4. Pressure equation: The presure equation, see Fig.1, is solved using the first estimates
for compressibility, ψ∗, and density, ρ∗, in order to obtain an estimated pressure, p∗.
Several non-orthogonality steps are performed for non-orthogonal meshes.

5. Correct flux and Velocity: By using the estimated pressure the flux can now be
corrected and we proceed to correct the velocity. The correction for velocity, U∗∗

is performed in an explicit way using the new pressure gradient, ∇p∗ and the first
predicted velocity, U∗ = H(U∗)/aUP .

6. Density correction: When all the pre-defined steps for PISO are performed we make
a last correction for density using the final pressure. These steps should be sufficient
for the continuity equation to be satisfied. Therefore the continuity equation is
effectvely introduced inside the PISO cycle and it is possible to check the mass
conservation error. For this, we use the density obtained from continuity equation
and compare with the value obtained with state equation ρ = ψp.

7. We now proceed to the magnetic component of the algorithm. The magnetic field
is computed from the induction equation, and we ensure the solenoidal nature of
the magnetic field using the projection method. The method guaranties ∇ ·B ≈ 0
by correcting the computed magnetic field. The BPISO name comes from the idea
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that the ∇ · B∗ field provided by a PISO similar scheme in the n + 1 time step is
projected into a divergence free ∇ · Bn+1 field. Assuming the flow is sufficiently
smooth the magnetic vector field can be decomposed into the sum of a curl and
a gradient, B∗ = ∇ × A + ∇φ. Here the curl of the vector potential A contains
the real physical part of B∗. Applying the divergence to both sides we obtain a
Poisson equation, ∇2φ = ∇ · B∗, that can be solved for the scalar function φ.
We finally obtain the physical meaningful magnetic field Bn+1 = B∗ − ∇φ. This
step is accomplished using the same MHD algorithm implemented in OpenFOAM
for incompressible flow8. In the magnetic field equation is introduced a fictitious
magnetic-flux pressure to prescribe the solenoidal constraint, in a similar way as the
pressure equation in a classical PISO scheme. At convergence, this variable is of the
order of the discretization error.

4 RESULTS

This section presents results obtained with the code described in the previous sections.
We have initially started by incorporating the compressible gas dynamics solver into the
existing incompressible MHD version of the code. We proceed with the incorporation of
the magnetic component in order to obtain a full working MHD compressible solver. To
test the gas dynamic implementation we resort to the well known bump channel flow,
see Moukalled and Darwish11. A second test case is also presented corresponding to a
perfectly conducting cylinder under supersonic MHD flow conditions, see Sjögreen and
Yee12.

4.1 Numerical analysis on the effect of the magnetic field on shock damping

Results are presented for pure gas dynamic and also for MHD flow. In these later
conditions a shock wave damping arises, see e. g. Vatazhin et. al13.

In Fig.2 it is depicted a 3D view of the mesh used to perform the computation, and
the corresponding boundary conditions. The length of the bump is equal to the channel
height, and its thickness is ten percent of the channel height. Although this test case
has no analytical solution it has been widely used to check the precision and stability
of related numerical codes. A mesh refinement study was performed and comparison is
also conducted with a solution obtained using a density based solver of the FLUENT
commercial code, see Fig.3.

For the pure gas dynamic problem the following boundary conditions are considered:
at inlet we impose temperature and total pressure; at outlet we impose static pressure.
All the remaining variables are extrapolated from the domain. Further we consider an
uniformly distributed magnetic field and solid walls are considered isolated walls by im-
posing the magnetic field B0. Results are obtained for inviscid flow using the Gamma
scheme9 for convective term treatment.

In Fig.4 we present results for the shock wave damping due to the imposition of two
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Figure 2: A 3D view of the mesh and corresponding boundary conditions.
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Figure 3: Comparison between the results obtained with Fluent and the new solver(B0 = 0). Mach
number evolution for the mid-span section of the channel.
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Figure 4: Shock wave damping under a imposed magnetic field, B0. Here N = σB2L/ρu is the interaction
parameter, a measure of the relative weights of Lorentz and inertial forces. The interaction parameter
can also be seen as the ratio of the damping time, τ = ρ/σB2, to the characteristic advection time, L/u.
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Figure 5: Comparison between the results obtained for the Mach flowfield; a) with and b) without an
imposed magnetic field.
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Figure 6: Partial 2D view of the mesh used and imposed boundary conditions.

transversal magnetic fields. These results are for a magnetic Reynolds number, at inlet,
of Rm ≈ 20 and for two interaction parameters, namely N = 0.8 e N = 1.16.

It is clearly visible that, in the pure gas dynamic problem, a shock wave appears slightly
downwind from the top of the bump. After applying a transversal magnetic field the shock
wave intensity and position are changed. There is a redistribution of the flow in order to
comply with the continuity condition on a vertical section at that location. This is clearly
visible by an increase in the area which is between mach number contours, slightly larger
for the case of an imposed magnetic field, see Fig.5. This kind of damping has been the
subject of intensive research, namely for applications regarding hypersonic propulsion14.

4.2 Blunt body MHD flow

This is a very tough test case that has called the interest of several researchers12,14.
The occurance of exotic MHD discontinuities is influenced by the inlet velocity and fluid
β. Here β = 2p/B2 relates pure gas dynamic and magnetic forces, namely for β >> 1
the pure gas dynamic forces govern the flow and for β << 1 the flow is controlled by
magnetic forces.

In Fig.6 we present a portion of the mesh emploied and the corresponding boundary
conditions. The computational domain comprises a rectangular region above the upper
left quadrant of a cylinder, extending to x = −0.65 along x -axis, and to y = −1.4 along
y-axis. A 2D structured mesh, with 160 × 120 nodes, is used for the computations. No
mesh independence study has been performed yet, but we have used a mesh with similar
refinement to that of De Sterck13. A MUSCL scheme was used to treat the convective
terms.

In Fig.7 we present the results obtained for the MHD flow on a conducting cylinder.
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Figure 7: Results obtained for the density contours, for computation of the MHD supersonic flow im-
pinging on a perfectly conducting cylinder.

11
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The presented results depict the changes occurring in the flowfield as we switch from the
MHD ideal model, for β = 5 and β = 10, to a resistive MHD computation for σ = 100
and Re = 1000. It is observed that the position, and shape, of the shock wave changes as
we move from an ideal to a resistive computation (Joule effect). There are no significative
changes, regarding the position and shape of the shock wave, for the ideal MHD solutions
obtained for different β values. Furthermore, we have been working towards obtaining a
solution for conditions of low β ( namely β < 1) but, for the time being, results have been
unsuccessful.

However, the most worrisome fact of these contour plots is the presence of wiggles,
which are similar to those observed in the odd-even decoupling of velocity and pressure
on colocated meshes. We are now trying to understand the cause for this problem, while
at the same time testing other high-resolution differencing schemes for the convective
terms in the transport equations.

5 CONCLUSIONS

The main objective of the present work was to present the developments attained on
the course of the implementation of an MHD compressible flow solver. Also, numerical
computations for two distinct geometries under conditions of pure gas dynamic and MHD
flow were carried out and are discussed.

The results obtained for a 3D channel with a bump were compared against results
obtained with the Fluent code, and some minor discrepancies are visible. It should be
mentioned that the Fluent computations are based on a density based solver, whereas our
results are based on a pressure based solver. This can be a main cause of discrepancies in
results. In spite of this fact, additional simulations with better differencing schemes for
the convective terms should be further investigated.

One of the toughest test cases that can be found in the literature concerns the super-
sonic flow impinging on a cylinder body, subjected to an imposed magnetic field. Several
conditions are considered, including laminar flow computation with joule effect dissipa-
tion. Results are compared with reference literature solutions. Problems of stability of
computations where found for low values of β. Also, the results obtained with MUSCL
present an oscillatory behavior, with the Gamma limiter giving much better results. How-
ever, the problem of wiggles in these solution fields also requires further investigation.
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