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Gómez∗, Fermı́n Navarrina∗, Manuel Casteleiro∗

∗Group of Numerical Methods in Engineering (GMNI)
Department of Applied mathematics, Civil Engineering School,

Universidade da Coruña, Campus de Elviña, 15071, A Coruña, Spain
e-mail: xnogueira@udc.es, web page: http://caminos.udc.es/gmni/index.html

†Department of Civil and Environmental Engineering,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Key words: Shock-capturing, Compressible flows, High-order methods, Unstructured
grids.

s it is known, the use of high-order numerical methods for the resolution of compressible
flows on unstructured grids is a very complex problem. While ENO and WENO [1, 2]
schemes obtain very good results when structured grids are used, their application to
unstructured grids is complicated due to the difficulties for choosing the appropriate
stencil. On the other hand, the most usual approach in this kind of grids is to use methods
based on a Taylor reconstruction of the variables with slope limiters [3]. However, most of
the existing slope limiters are only designed for second-order schemes, by limiting the first
derivative of the Taylor reconstruction. Unfortunately, the straightforward application of
slope limiters to higher-order schemes by limiting the higher-order derivatives, may result
in bad behavior of the solution. Moreover, slope limiters usually identify regions near
smooth extrema as requiring limiting. As a result, the optimal higher-order convergence
rate is reduced. A possible way of improving this behavior is to develop a selective limiting
method, by measuring the smoothness of the solution and switching off the limiter when
the solution is not sharp enough. With this procedure, optimal higher-order convergence
rate in smooth areas can be recovered. In this work we present the a new MLS-based
sensor to detect shock waves on general grids, used with standard slope-limiters. We
show the results of several benchmarks, in one and two dimensions. The results are very
promising, comparable to those of essentially non-oscillatory (ENO) and weighted ENO
(WENO) schemes on structured grids.
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1 Introduction

High-order finite volume methods usually work with a Taylor reconstruction of the
variables inside each control volume I:

UUU(xxx) = UUU I +∇∇∇UUU I · (xxx− xxxI) + ... (1)

However, it is known that the numerical schemes built in that way are not monotonic.
Thus, new extrema will appear when the high-order scheme is applied to non-smooth
flows. In order to force monotonicity, a very common technique is the use of slope-
limiters. Slope-limiters are usually designed for second order approximations, and they
limit the reconstruction as:

UUU(xxx) = UUU I + χI∇UUU I · (xxx− xxxI) (2)

where χ is a value between 0 and 1 that is computed with any slope limiter algorithm.
However, it is known that this approach could result in a more diffusive and less accurate
solution, due to the fact that the slope limiter may be active even in regions where the
flow is not-smooth. The application of a selective limiting procedure can alleviate this
problem and to recover optimal higher-order convergence rate in smooth areas. A selective
limiting procedure requires a sensor to decide where the limitation is applied.

A sensor can be designed based on the multiresolution properties of the Moving Least
Squares approximations [4]. The MLS method tries to approximate the value of a function
in terms of MLS shape functions (N). These shape functions are built from a discrete
set of points (nodes) so that a MLS approximation of a vector variable UUU I in the control
volume I can be written as:

UUU I(xxx) =

nI∑
j=1

UUU jNj(xxx) (3)

where nI is the number of neighbors of I.
In the construction procedure of the MLS shape functions, kernel functions are required

to weight the value of the different points of the neighborhood of I [5]. In this work we
have used the following 1D exponential kernel to build the MLS shape functions:

W (x, x∗, κx) =
e−( s

c)
2

− e−( dm
c )

2

1− e−( dm
c )

2 (4)

with s = |xj − x∗|, dm = max (|xj − x∗|), with j = 1, . . . , nx∗ , c = dm

2κx
, x∗ is the reference

point (the point where the MLS-shape functions are evaluated), and nx∗ is the number of
neighbors of the reference point. Moreover x is the position of every cell centroid of the
stencil and κx is a shape parameter. A tipical value for this parameter is κ = 1 (see [6]).
A 2D kernel is obtained by multiplying two 1D kernels. Thus, the 2D exponential kernel
is the following:

Wj(xxx,xxx
∗, κx, κy) = Wj(x, x

∗, κx)Wj(y, y
∗, κy) (5)
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A MLS approximation can be seen as a low-pass filtering. This is the basis of the
MLS sensor presented in this work. Thus, in the next section we will introduce briefly
the MLS-based filters, and then we will apply this results to the development of the MLS
sensor.

2 MLS-based Filters

The development of explicit numerical filters has attracted the attention of researchers
of the field of turbulence, particularly in the case of Large-Eddy simulation (LES). LES
methodology needs a separation between the different scales of the flow, and this separa-
tion may be performed with explicit numerical filters. The use of the Reproducing Kernel
Particle Method (RKPM)) as a filter for turbulence problems was proposed in [8]. Thus,
a MLS approximation of a variable can be seen as a low-pass filtering of the variable.
Following equation (3) we write for a given variable Φ:

ΦI =

nI∑
j=1

Nj(xxx)Φj (6)

where n is the number of neighbors of the stencil of cell I, and we use the notation¯to
indicate a filtered variable.

The filter properties are analyzed by the study of its transfer function, that is, a
mathematical model that indicates the answer of a system for a certain input. In this
case, the input is the nodal value of the variable. The answer is the result of applying
a MLS approximation to the nodal values of the variable. Then, the transfer function
associated to equation (6) is:

Ĝ(κ) =

nI∑
j=1

Nj(xxx)eiκ(xj−xI) (7)

Ĝ(κ) is determined by the number of points of the stencil, the kind of basis and the
kernel function used to build the MLS shape functions.

In figure 1 we plot the transfer function of MLS filters with kernel (4) for different
values of the κ parameter. In that figure, a value of Ĝ = 1 indicates no filtering. We note
that we can vary the properties of the MLS-based filter by modifying the shape parameter
κ. This is the basis of the proposed MLS-based sensor.

3 A MLS-based sensor

The connection between MLS approximations and wavelets has been successfully used
for error estimation and adaptivity [9]. This connection makes possible to define a wavelet
function from MLS shape functions, as we will show next. With the kernel given by
equation (4), the approximation of the solution given by (3) keeps all the resolutions and
properties of the solution U(x), until the κ scale. On a wavelet framework, MLS shape
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Figure 1: 1D transfer function of MLS approximations with the exponential kernel

functions could be seen as scale functions and κ as the scale parameter. Different values
of κ lead to different resolutions. Then, a wavelet function can be obtained by defining
two sets of MLS shape functions, with different shape parameters of the kernel function,
and so, keeping different resolutions. Thus, we obtain the κH − scale and κL − scale
approximations,

UκH (x) =

nI∑
j=1

UjN
κH
j (x), UκL(x) =

nI∑
j=1

UjN
κL
j (x) (8)

where the κH−scale approximation corresponds with the high-resolution approximation,
and the κL − scale corresponds with the low-resolution approximation.

So, the wavelet function Φ can be written as:

Φ(x) = NκH (x)−NκL(x) (9)

On the other hand, the κH − scale solution can be written as the sum of the low scale
contribution (UκL(x)) and the high scale part (Ψ(x)).

UκH (x) = UκL(x) + Ψ(x) (10)

being

Ψ(x) =

nI∑
j=1

UjΦj(x) =

nI∑
j=1

Uj(N
κH (x)−NκL(x)) (11)

This decomposition process could continue for the low scale part UκL(x) and so on.
The function Ψ(x) is a measure of the smoothness of U(x). We propose to use it as a

sensor in a selective limiting procedure. Thus, when Ψ(x) is greater than a given value,
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the limiter is switched on at that point, but it remains switched off (χ = 1) at the points
that are smaller than the threshold value.

On the other hand, to completely define the methodology, we have to define the thresh-
old value. We consider the density as the reference variable and we use it to define the
threshold value Tv as:

Tv = Clc |∇ρ|I (AI)
1
d/M (12)

AI is the size (area in 2D) of the control volume I, d is the number of dimensions of the
problem, Clc is a parameter, and M is the free stream Mach number. If Clc = 0, there is
no selective limiting, and the usual slope-limiter algorithm is used in the whole domain of
computation. We have included a Mach number scaling in order to reduce the variability
of the Clc parameter, but in general it is problem dependent. In our experience, a good
initial guess is Clc = 0.32. Note that it is also possible to use a local Mach number instead
the free-stream Mach number for the scaling.

Thus, the slope limiter is switched on when:

Ψρ =

nI∑
j=1

ρj(Nj
κH (x)−Nj

κL) > Tv (13)

In order to improve the robustness of the selective limiting in unstructured grids, a good
practice is to switch on the limiter in all the points of the stencil of the control volume
I when the limiter is switched on in I. If more dissipation is required to avoid wiggles,
we could reduce the value of the Clc parameter. This methodology fits very well with
the use of the FVMLS method [5], a higher-order finite volume method based on MLS
approximations of the derivatives. We have used this method in our calculations, although
the MLS sensor can be used with any other numerical technology. In all the examples
presented here, we have computed the κH − scale shape function with κx = κy = 6 and
the κL − scale shape function with κx = κy = 1.

4 Numerical examples

4.1 A first 1D test. Toro’s problem

Next we present a 1D-test designed to check the accuracy and robustness of numerical
methods for hyperbolic equations: 1D Euler equations are solved with the following initial
conditions: (ρ, v, p) = (1.0, 0.0, 1000) if x < 0.5 and (ρ, v, p) = (1, 0, 0.01) if x ≥ 0.5. This
setup of the problem is the same as the proposed in [10]. It is the left half of the blast
wave problem of Woodward and Colella [11]. The computational domain is [−5, 5], and
100 cells are used. With this example we want to show the effect of a vartiation in the
parameter Clc, so no Mach scaling has been used. Exact solutions have been computed
with the NUMERICA library [12].
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Figure 2: Toro’s problem [10], 100 cells, results for t = 0.012. (A) density,(B) velocity (C) pressure, for
different values of Clc parameter and comparison with the results for a second-order FV-MLS scheme
with slope-limiter. On the right we plot a detail of the shock zones. No local Mach number was used for
the scaling.
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4.2 2D examples. Shu-Osher problem

We show the results for the 2D extension of the Shu-Osher problem [13]. The 2D
Euler equations are solved in [−5, 5] × [−1, 1], with initial conditions (ρ, vx, vy, p) =
(3.857, 2.629, 0, 10.333) if x < −4, and (ρ, vx, vy, p) = (1 + 0.2 sin(5x), 0, 0, 1) if x ≥ −4.
We use a structured 400 × 80 cartesian grid. Figure 3 (left) shows the density and the
function Ψρ after 1.8 seconds, while on the right it is shown a cut in y = 0 of the function
Ψρ for this case. It is clearly seen that it indicates the points where the solution is not
smooth.
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Figure 3: Third-order solution of the density (ρ) to the Shu-Osher problem and function Ψρ for the Shu-
Osher problem (left). On the right hand side, a cross section at y = 0 shows more clearly the appearance
of Ψρ, and how this function detects the points where the reference variable (density) is not smooth.

4.3 2D examples. Transonic flow

As an example of application for 2D unstructured grids, we show a classical transonic
example: the subsonic flow past a NACA 0012 airfoil, with Mach number M = 0.8 and
angle of attack α = 1.25. The grid used is made of quadrilaterals and we have placed
64 control volumes along each side of the profile. The total number of elements is 5322.
The external boundary of this grid is a circumference. The radius of this circumference
is 25 chords of the profile. We have used a fourth order FV-MLS scheme with the MLS
sensor and the limiter designed by Barth and Jespersen [14] (BJ), but any other limiter
could be used with our approach. The value of the shape parameters of the kernel are
κx = κy = 1 for the spatial approximation. In figure 4 (top left) we show the Mach
contours and the cells where the BJ limiter is switched on (shaded). In this cells we
apply the selected slope limiting algorithm as usual. The figure also show (top right) the
cells where the BJ coefficient is limiting (χ 6= 1).With the selective limiting, fourth order
reconstruction is recovered at wall-boundary cells upstream and downstream of the main
shock, since the limiter is switched off. This effect is shown in figure 5, where we plot the
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entropy generation on the profile surface. We note the effective reduction of the entropy
generation when the MLS-based selective limiting is used. This reduction is bigger in the
smoother part of the flow, upstream of the strong shock. Selective limiting also eliminates
the spurious effect of negative entropy generation when the same χ is used to limit the
first, second and third derivatives of the Taylor reconstruction in a fourth order scheme.
This effect does not appear with the use of the second order FV-MLS scheme and BJ
limiter.

X

Y

Z X

Y

Z

X

Y

Z X

Y

Z

Figure 4: Limited cells and Mach contours for the transonic flow past a NACA 0012 airfoil, with Mach
number M = 0.8 and angle of attack α = 1.25. In the left, shaded cells indicate the cells in which the
limiter is switched on. In the right, colored cells indicate the cells where the BJ coefficient is limiting
(χ 6= 1). In the bottom, we show a zoom of the profile, where is clearly seen that the selective limiting
recovers the higher-order scheme, since the limiter is switched off in the boundary cells upstream and
downstream of the shock, while the BJ limiter coefficient is limiting.

Drag and lift coefficients are shown in table 1. It is shown that the results with selective
limiting are closer to the AGARD reference data [15] than the results obtained when the
BJ limiter is used without selective limiting. The reduction in the drag coefficient indicates
the less dissipative character of the fourth order scheme with selective limiting. We note
that the fourth order BJ scheme without selective limiting is more dissipative than the
second order one. This effect is also related with the use of the same χ to limit all the
derivatives. Finally, in figure 6 we show a plot of the pressure coefficient (Cp) for the
different schemes, and we compare it with a reference solution obtained on a finer grid of
12243 control volumes, with 128 cells placed along each side of the profile.
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Figure 5: Entropy generation over the profile surface. S0 is the free stream entropy. Selective limiting
reduces the entropy generation, and this effect is bigger upstream of the shock. The use of a fourth order
scheme with BJ limiter does not reduce the generation of entropy, and it presents the problem of negative
entropy generation. This anomalous behavior is due to the use of the same value of χ to limit all the
derivatives. This problem is also alleviated with selective limiting.

Conclusion

A multidimensional shock detection technique based on the Moving Least Squares
method that can be used in both structured and unstructured grids has been presented.
Multiscale properties of MLS are used to separate the high scale components of the
solution to built a MLS-based wavelet function of a reference variable. When the wavelet
function is bigger than a threshold, the slope limiter is switched on. The method is robust
and it allows to keep the maximum order of accuracy of the scheme in smooth regions.
Nowadays the authors are working on several aspects that are in a preliminary stage, as
the establishment of the value of the Clc parameter and to analyze the influence of the
shape parameter κ on the properties of the proposed method.

Table 1: Lift (CL) and drag (CD) coefficients

Scheme CL CD
BJ 2nd order 0.341 2.465E-02
BJ 4th order 0.342 2.486E-02

BJ 4th order + MLS sensor 0.343 2.317E-02
AGARD reference [15] (structured 192× 39) 0.347 2.221E-02
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Figure 6: Pressure coefficient for different schemes and zoom of the shock zones. A- Fourth order MLS-
based selective limiting. B- Fourth order BJ scheme. C- Second order BJ scheme. D- Reference solution
obtained with a second order BJ scheme on a finer grid. Some points of the reference solution have been
skipped for clarity in the non-zoomed picture.
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