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Abstract. Numerical investigations of the insect free-flight aerodynamics are performed
by means of three-dimensional Direct Numerical Simulations (DNS) of the flow around a
fruit fly during free-flight maneuvers using the OpenFOAM toolkit. The governing equa-
tions are the incompressible Navier-Stokes equations in arbitrary Lagrangian-Eulerian for-
mulation (ALE). The model of a fruit fly is constructed as a set of movable solid parts
that combined with the geometry of the computational domain provides up to 12 degrees of
freedom. In order to avoid inappropriately high mesh deformation, the moving mesh is re-
alized as a sequence of slightly deforming meshes together with an interpolation of predicted
flow fields during the mesh transition. The used data fruit fly kinematics are prescribed as
obfained from detailed experimental studies of Drosophila free-flight maneuvers. Using the
developed adapted OpenFoam toolkit a first test simulation of a 1-degree-of-freedom wing
motion with a full stroke of 160◦ of a fixed fruit-fly is performed. The obtained flow fields
reveal highly unsteady and vortical flow fields around the wings. The shedding of leading
edge vortices, which play an important role for the insect aerodynamics, and the distribu-
tion of the pressure fields and the surface forces are also studied and will be presented at
the conference.
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1 INTRODUCTION

The study of the insect flight performance reveals the sophisticated mechanism of gen-
eration of aerodynamic forces, which can be considered as an interactive combination of
delayed stall, rotational circulation, and wake capture.1 Many theoretical aspects are
studied numerically in simplified 2D simulations2 as well as in full 3D unsteady sim-
ulations,3 which is computationally more difficult. Considering mesh based numerical
methods (e.g. finite volume method) the problems induced by the insects motion are the
most challenging. The insects locomotion during some free-flight maneuvers are charac-
terized by complicated folded wings stroke with high amplitudes including clapping of
the wings at the end of upstroke. The implementation of the wings motion with methods
making use of the framework of Arbitrary Lagrangian-Eulerian (ALE)4 can lead to an
inadmissible mesh deformation. Additionally, in the case of non-hovering flight at least
translational and rotational movement of an insect model or the complete computational
domain also have be accounted for.

In this work we consider a two-step approach for numerical modeling of free-flight
fruit fly maneuvers. The fruit fly motion is examined in two different phases. First,
the computational domain moves as a solid body together with the fruit-fly body. This
motion is accounted for mathematically by adding a term to the incompressible Navier-
Stokes equations. Second, the simulation of the wings strokes is performed in a fixed
domain using the ALE method.

In the next Section we describe shortly the geometrical insect model derived from the
data obtained by P.Schützner and O.-F.Lehmann5 in their experimental study of free-
flight maneuver of a fruit fly (Drosophila). Section 3 contains the detailed description
of the developed approach including an orthogonal transformation of the computational
domain and related changes to the Navier-Stokes equations. In Section 4 results of test
simulations of a simplified 1-degree-of-freedom fruit fly motion are presented.

2 EXPERIMENTAL DATA AND GEOMETRICAL MODEL

In P.Schützner and O.-F.Lehmann5 the experimentally obtained free-flight kinematics
are presented as time series of coordinates of fixed points at the body and the wings of a
fruit fly during free-flight maneuver. The visualization of the marker paths is depicted on
Fig. 1. Here complicated folded lines are produced by the points located at the tips and
the trailing edge of the wings. The slightly disturbed lines correspond to points connected
with the body.

The fruit fly model is constructed geometrically as a combination of three solid parts:
the first one is the body, i.e. head-thorax-abdomen system, and the two others are the
wings. One more accepted constraint is that the wing base points are attached to the fruit
fly body. In this case the number of degrees of freedom (DoF) equals to 12: six degrees
of freedom represent the fruit fly body motion and the wings rotation is described with
additional 6 DoF.
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Figure 1: Visualization of the experimentally obtained free-flight kinematics of a fruit fly using trajectories
of some points on the fruit fly.

In order to investigate the problem we introduce a two-step approach. First, we define
the moving orthogonal coordinate system attached to the flies body. Then we consider the
deformations invoked by the wings rotation. The first step demands for certain changes
to Navier-Stokes equations, and the second one is realized using the standard Arbitrary
Lagrangian-Eulerian (ALE) approach.4

3 THE TRANSFORMATION OF COORDINATE SYSTEM AND THE GOV-
ERNING EQUATIONS

The body attached coordinate system can be constructed based on a set of three points
(not lying on a straight line) which are regarded to be immovable relative to the body.
One of them can be considered as the origin of the new coordinate system, and the whole
set of three points is used to construct basis vectors rigidly bound with the points, and
hence, with the body.

For the considered case we take the point of the center of gravity (CoG) and two wing
base points. Fig.2 illustrates the chosen point set. The blue point is the CoG point
which is considered as the origin of the moving coordinate system, the red points are the
wings base points. The time varying coordinates of the CoG in the global coordinate
system are denoted by s(t). The basis vectors ei(t), i = 1, 2, 3 are constructed as follows.
The vector e1(t) is obtained by normalization of the vector pointing from CoG to the
middle point of the wing base interval. The unit vector e3(t) is orthogonal to the plane
defined by the point set. And finally, e2(t) is the vector product of e3(t) and e1(t). Thus,
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Figure 2: The path of the point of center of gravity (blue) of the fruit fly and the wing base points (red).

{ei(t); i = 1, 2, 3} are orthonormal vectors, i.e. (ei(t), ej(t)) = σi,j, i, j = 1, 2, 3.
Consider the matrix E(t) = (e1(t), e2(t), e3(t)) comprised by the vectors {ei(t); i =

1, 2, 3} and the matrix
O(t) = E(t)E(t0)

T , (1)

where t0 denotes the initial time, and ()T symbolizes a transposed matrix. One can
see that due to orthogonality of the unit vectors ei(t), i = 1, 2, 3 the matrix E(t) is an
orthogonal matrix. The matrix O(t) is also orthogonal as a product of two orthogonal
matrices, i.e.

OOT = I, (2)

where I = (σi,j) is the identity matrix. The transformation x→ x̃(t) defined as

x̃ = O(x− s) (3)

leads to the coordinates x̃ in the coordinate system attached to the moving body. The
inverse transformation reads

x = OT x̃ + s. (4)

Next, the incompressible dimensionless Navier-Stokes equations read

du

dt
=

1

Re
∇2u−∇p+ f , ∇ · u = 0 (5)

where
d

dt
=

∂

∂t
+ (u · ∇) (6)

is a total time derivative, Re is the Reynolds number, p and u are the pressure and the
velocity fields, respectively, and f is a driving force (we suppose here that f = 0).

We apply the transformation (3) to Eqs. (5) to obtain adapted Navier-Stokes equations
involving the velocity field ũ = ∂x̃(t)/∂t.
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Differentiating Eq.(4) with respect to t leads to

u = OT ∂x̃

∂t
+
∂OT

∂t
x̃ +

∂s

∂t
= OT ũ +

∂OT

∂t
x̃ +

∂s

∂t
(7)

where ũ is the velocity field in the moving coordinate system.
Using (3), we find the operator ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3)

T and the Laplacian ∇2 in
the moving coordinates x̃

∇ = OT ∇̃, ∇2 = ∇̃2, (8)

where ∇̃ = (∂/∂x̃1, ∂/∂x̃2, ∂/∂x̃3)
T .

The substitution of the relation (7) into momentum equation (5) accounting that

∇2

(
∂OT

∂t
x̃ +

∂s

∂t

)
= 0

yields

OT dũ

dt
+
∂OT

∂t
ũ +

d

dt

(
∂OT

∂t
x̃ +

∂s

∂t

)
= OT

(
1

Re
∇̃2ũ− ∇̃p

)
. (9)

or,equivalently,

dũ

dt
=

1

Re
∇̃2ũ− ∇̃p−O d

dt

(
∂OT

∂t
x̃ +

∂s

∂t

)
−O∂O

T

∂t
ũ. (10)

Note that the obtained Eq.(10) differs from the momentum equation (5) only with an
additional drive force term f(u,x, t).

For the continuity equation in (5) using Eq.(7) and the matrix orthogonality property
(2) we have the following

∇ · u = OT ∇̃ · (OT ũ) +OT ∇̃ ·
(
∂OT

∂t
x̃ +

∂s

∂t

)

= ∇̃ · (OOT ũ) + ∇̃ ·
(
O∂O

T

∂t
x̃ +O∂s

∂t

)

= ∇̃ · ũ + ∇̃ ·
(
O∂O

T

∂t
x̃

)
= 0. (11)

Further, taking the time derivative in Eq.(2) we obtain

∂

∂t

(
OOT

)
= O∂O

T

∂t
+
∂O
∂t
OT = O∂O

T

∂t
+

(
O∂O

T

∂t

)T

= 0. (12)
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It means that the matrix O∂OT/∂t is skew-symmetric, and hence, all the diagonal ele-
ments are equal to zero. Thus,

∇̃ ·
(
O∂O

T

∂t
x̃

)
= tr

(
O∂O

T

∂t

)
= 0.

The substitution of the last equation into the Eq.(11) together with Eq.(10) implies

∂ũ

∂t
+ (ũ · ∇̃)ũ =

1

Re
∇̃2ũ− ∇̃p̃+ f̃ , ∇̃ · ũ = 0, (13)

where

f̃ = −2O∂O
∂t

T

ũ− ∂

∂t

(
O∂O
∂t

T
)

x̃− ∂2s

∂t2
(14)

And finally, following the standard ALE approach for a moving (deforming) mesh we
obtain the following equations

∂ũ

∂t
+ ((ũ− umesh) · ∇)ũ =

1

Re
∇2ũ−∇p̃+ f̃ , ∇ · ũ = 0, (15)

where umesh is the velocity of the mesh deformation, the intermediate velocity ũ is linked
to the velocity u by Eq.(7) and f̃ is defined by Eq.(14). Note that the boundary conditions
for the velocity field are corrected taking into account Eq.(7).

The above described approach has been implemented using the OpenFOAM toolkit.

4 RESULTS OBTAINED FOR SIMPLIFIED FRUIT FLY MOTION

In this section we present some results obtained in Direct Numerical Simulations (DNS)
of a flow induced by a simplified fruit fly model which we defined in order to test the
implemented algorithms.

4.1 Computational setup

The geometry of a fruit fly model and the computational domain are depicted on Fig.3.
The characteristic size of the fruit fly model is about 2.5mm. The spherical computational
domain has a diameter of 30mm.

The considered fruit fly motion is defined by the motionless body and an 1-DoF rotation
of the wings. The angle of the wing rotation is described by the sinusoidal law with the
stroke swing of 160◦ and the frequency of 200sec−1. In this case the equations Eq.(15) are
reduced to the incompressible dimensionless Navier-Stokes equations in ALE formulation

∂u

∂t
+ ((u− umesh) · ∇)u =

1

Re
∇2u−∇p, ∇ · u = 0, (16)

where Re = 100.
The boundary conditions are:
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Figure 3: The geometrical model of fruit fly with one degree of freedom (left) and the computational
domain(right)

• at the exterior (spherical) boundary – zero gradient for the velocity field and fixed
zero value for the pressure;

• at the motionless surface of the body – wall boundary conditions for the velocity
field (u = 0) and zero gradient for the pressure;

• at the moving surface of the wings – moving wall boundary conditions for the velocity
field (u ≈ umesh ) and zero gradient for the pressure;

In order to realize the wings motion some special OpenFOAM libraries are imple-
mented. The mesh motion velocity umesh is calculated using Laplacian mesh motion
solver with inverse quadratic diffusivity. Due to the high amplitude of the wing stroke
the mesh motion produces some inadmissibly deformed cells. To avoid this effect, a set
of four meshes is used. Each mesh of the set is constructed for a certain range of rotation
angle and provides there high quality cells. The meshes are changed together with the
interpolation of flow fields.

4.2 Predicted flow fields

The objectives for these simulations are twofold. First we wanted to test the developed
computational routines, mesh generation/deformation procedures and other numerical
problems, and second obtain first results of the flapping wing aerodynamics. Special
attention is paid to the spatial distribution of the pressure, the surface distribution of the
forces acting on the wings and the body, vortex formation and the vorticity field.
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Figure 4: Isosurfaces of the dynamic pressure obtained in DNS at the different wing positions. The fruit
fly surface is coloured with the pressure values.

Figure 5: The distribution of the magnitude of the forces acting on the surface obtained in DNS at the
different phase of the wings stroke

Some results obtained in these DNS are depicted on Fig.4–7.
The aerodynamic forces acting on a fruit fly are the result of the integration of the

normal component of the local stress σ = −pI + τ over the complete surface. So, it is
important to get the information of the distribution of both pressure and viscous force
components. In Fig.4 the surface distribution of the pressure and some pressure isosurfaces
for the different times and in Fig.5 the distribution of the surface forces magnitude |σn|
are presented. Comparing the distributions of the pressure and the surface forces one
concludes that local extrema as well as extremal points are different at a different wing
positions. The contribution of pressure and viscous components strongly dependent on
the wings position. Nevertheless, it is observed that the largest values of the surface forces
develop at the edges of the wings.

The distribution of the vorticity magnitude shown in Fig.6 also reveals the dependence
on the stroke phases. The highest values are observed close to the wings edges as a
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Figure 6: Isosurfaces of vorticity magnitude at the different wing positions.

Figure 7: Streamlines of the flow around leading (left) and trailing (right) edges

result of high shear gradients. The vortices at the leading and trailing edge (see Fig.7)
dynamically appear and disappear in accordance with the generation of lift and drag.

5 CONCLUSIONS

In the work we present the algorithms and the methodology to perform DNS of the
flow around fruit fly during free-flight maneuver using experimentally obtained kinematics.
The developed approach is based on the superposition of orthogonal transformation of
the computational domain and mesh deformation in the ALE framework.

Using the algorithms together with the generation of a few new meshes DNS of a
simplified 1-DoF fruit fly motion with a full stroke of 160◦ is realized. The analysis of
the obtained results shows that the flow simulation of a stroke with the wings rotating in
one direction leads to reasonable aerodynamics including the generation of leading and
trailing edge vortices.
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