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Abstract. Based on a system of stochastic differential equations, describing a gas at
small Knudsen numbers, explicit equations of gas dynamics with additional small terms
for the Fokker – Planck model of Boltzmann collision integral are obtained.
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1 INTRODUCTION

The accuracy of gas dynamic calculations can be increased by implementation of hi-
erarchical algorithms based on micro – macro representations1,2,3,4,5,6,7,8,9. Usually one
starts from the Boltzmann equation2,3

∂F

∂t
+ v

∂F

∂x
=

1

Kn
Q(F, F ) (1)

with a parameter Kn, depending on the space variable x. A whole computational domain,
as a rule, has to be divided at subdomains possessing different properties. If Kn is of
order 1 then it is the subdomain where Boltzmann equation has to be applied. In the
regions, where Kn is small, one can use the Kolmogorov – Fokker – Planck equation (for
moderate Kn)1,2,3,10,12

∂F

∂t
+ v

∂F

∂x
+

1

Kn

∂(a(F )F )

∂v
=

1

Kn

1

2

∂2(σ2(F )F )

∂v2
(2)

in which the coefficients (the vector a and the matrix σ2) are defined by a collision model
(we describe it bellow). It is nonlinear equation for seven – dimensional distribution
function in phase space as well as the Boltzmann equation but with more simple structure
of collision integral .

In the range of moderate numbers Kn it is possible to get a macroscopic description—
stochastic quasi – gas dynamic equations9,11

∂ρ

∂t
+
∂ρV

∂x
=

1

2

∂2

∂x2
(Kn

D2

γ2
ρ)

∂

∂t
(ρV ) +

∂

∂x
(V ρV ) = − ∂

∂x
(
D2

γ
ρ) +

1

2

∂2

∂x2
(Kn

D2

γ2
ρV ) (3)

∂

∂t
(ρE) +

∂

∂x
(V ρE) = − ∂

∂x
(
D2

γ
ρV ) +

1

2

∂2

∂x2
(Kn

D2

γ2
ρE)..

Here they are written for 1D and in the case when the following connection with the
coefficients of the above Kolmogorov – Fokker – Planck equation (2) is assumed11:

a(·) ≡ γ(x, t), σ(·) ≡ D(x, t), D2/γ = RT,
D2

γ
ρ ≡ p.

For very small Kn these equations tends to Navier – Stokes equations.
In more general case the coefficients in the Kolmogorov – Fokker – Planck equation

can be calculated under some simplifying assumption10: vector a

a(c) = −c

c

√
π

4
[
√
πerf(c)(2c2 + 2− 1

2c2
) + e−c2(2c+

1

c
)],
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the components of matrix σ2

σ2
xx(c) =

√
π

4
[P (c) + c2xS(c)],

σ2
xy(c) =

√
π

4
cxcyS(c),

P (c) =
√
πerf(c)(

c3

3
+

3

2
c+

3

4c
− 1

8c3
) + e−c2(

c2

3
+

4

3
+

1

4c2
),

S(c) =
√
πerf(c)(c+

3

2c
− 3

4c3
+

3

8c5
) + e−c2(1 +

1

c2
− 3

4c4
),

c ≡ c′/
√
T ′, where c′ = v′ −V′, c′ = |c′| and T ′ are nondimensional thermal velocity, its

absolute value and temperature,

erf(β) ≡ 2/
√
π
∫ β

0
e−γ2

dγ.

That gives quite robust model.
The above micro – macro bridge is reached by the help of the theory of random

processes11 as it is presented in the next section.

2 STOCHASTIC MODELS

If a gas is treated as a collection of chaotically moving molecules rather than a contin-
uous medium, then we obtain mathematical models based on the apparatus of the theory
of stochastic differential equations1,12.

2.1 Micro scale, Kn ∼ 1

Ludwig Boltzmann derived his famous equation considering a gas as determined num-
ber of rigid spheres and introduced stochasticity by taking into account the hypothesis of
molecular chaos – Stossanzahlanzatz3. Following A. V. Skorokhod1 at the very beginning
we regard the positions and velocities of the molecules as random time functions depend-
ing on random independent couple collisions. The equations of motions of the molecules
fullfils a system of stochastic differential equations

dxi(t) = vi(t)dt,

dvi(t) =
n∑

j=1

∫
f(θ, xi(t), vi(t), xj, vj)p

(n)
ij (dθ × dt), (4)

where xi and vi determine the position and velocity of the particle in the phase space
R3 × R3 (for the sake of shortness let us note it by Z and the couple (xi(t), vi(t)) let us

note by zi(t)), the integral over the stochastic Poisson measure p
(n)
ij at Θ × [0,∞) (Θ is

the surface of unit sphere) is an impulse random force of interaction which change the
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conditions of particles jump – likely (the impulses of the interacting particles change by
jumps), namely the velocity of i – particle as a result of collision with j – particle is changed
by the magnitude f(θ, xi(t), vi(t), xj, vj) which is called a jump function. The solution
(x1(t), v1(t), . . . , xn(t), vn(t)) is Markov process. Kolmogorov equation for distribution of
the process (the direct equation) plays the role of Liouville equation. Let us introduce a
“statistical” distribution function:

µ
(n)
t (A) =

1

n

n∑
i=1

χA(xi(t), vi(t))

(χA – indicator of Borel set A of our phase space) and let us study a limit behaviour of
that random measure at n→∞.

Let Ep
(n)
ij (dθ× dt) = 1

n
m(dθ)dt, where m is a finite measure at Θ (its concrete expres-

sion will be established later). Then under some smoothness assumptions the following
statements holds.

1) The measure µ
(n)
t (A) weakly converges to a non random measure λt(A), for which

an equation holds: for any quite smooth finite function φ(z)

d

dt

∫
φ(z)λt(dz) =

∫
(
∂

∂x
φ(z), v)λt(dz)

+
∫ ∫ ∫

[φ(z + f(θ, z, z′))− φ(z)]m(dθ)λt(dz
′)λt(dz), (5)

which can be considered as generalized Boltzmann equation; if a density F of measure
λt(dz) exists then if satisfies the classical Boltzmann equation.

2) Let the initial values of functions z
(n)
1 (t), . . . , z

(n)
k (t) (the solutions of the system (4)

at given n) converge to z
(n)
1 (0), . . . , z

(n)
k (0). Then a mutual distribution of the processes

(z
(n)
1 (t), . . . , z

(n)
k (t)) at n→∞ converges to mutual distribution of k independent processes

(z1(t), . . . , zk(t)), each of which is a Markov process satisfying a system of stochastic
differential equations

dxi(t) = vi(t)dt,

dvi(t) =
∫
f(θ, xi(t), vi(t), x

′, v′)p̂(dθ × dx′ × dv′ × dt), (6)

where p̂ is a Poisson measure at Θ×Z× [0,∞). By the way, “Stossanzahlanzatz” follows
from that statement.

If in the equation (5) we put formally:
θ = ξ, ξ ∈ Ξ, Θ = Ξ is unit sphere,
ξ = {cos ε sinα, sin ε sinα, cosα},
m(dθ) = d2 | v′ − v || cosα | sinαdαdε, d is diameter of a molecule,
0 < α < π,0 < ε < 2π are the angles of the local spherical coordinate system the axe

z of which coincides with vector v′ − v,
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and to take jump function as f(·) = ξ(v − v′, ξ), (·, ·) is inner product,
then the equation (5) turns in the generalized Boltzmann equation for gas of rigid

spheres.
Let us assume now that the measure λt(dx, dv) has a density F (x, v, t) and nondimen-

sionalize our problem:

t = t∗t
′, x = x∗x

′, v = v∗v
′, F = F∗F

′, n = n∗n
′, T = T∗T

′,

where
v2
∗ = 2RT∗, t∗ = x∗/v∗, F∗ = n∗/(2RT∗)

3/2.

As n∗, V∗, T∗ let us take n(x, t), V (x, t), T (x, t), a local macroscopic molecular number
density, velocity and temperature. Then the local Maxwellian take the more convinient
form

FM = (1/π3/2) exp(−(v − V1)
2),

and Kn is a function of x and t:

Kn(x, t) = 1/(d2n(x, t)x∗),

that coincides with usual determination of Knudsen number as the ratio of the mean free
path (which can be taken to the accuracy of constant

√
2π/4 ≈ 1, 11 as 1/d2n(x, t), d is

diameter of a molecule) to a character problem range x∗.
The only one free parameter is x∗ which depends on a scale of each subdomains of a

problem under consideration.
Below, the prime marks of the dimensionless variables will be discarded.
So we can consider one particle in a mean field and the basis for deriving a hierarchy

of gas dynamics models is a stochastic process {x1(t), v1(t)}, describing the motion of a
particle in the six-dimensional phase space. The stochastic process is governed by the
system of stochastic differential equations1,2

dx1(t) = v1(t)dt,

dv1(t) =
∫ ∫ ∫

f(θ, x1(t), v1(t), x, v)p(dθ × dx× dv × dt), (7)

where the vector f is a function of the velocity jump due to a collision between molecules,
p is a Poisson random measure with the expectation:

Ep(dθ × dx× dv × dt) =
1

Kn
m(dθ)λt(dx, dv)dt,

m(dθ) is a given function determining a collision model, and λt(dx, dv) is the measure
generated by {x1(t), v1(t)}, (as a result, the problem belongs to the class of nonlinear
Markov systems). The density of λt(dx, dv) satisfies the classical Boltzmann equation
(1). The nondimensionalization of the problem yields the parameter Kn(x, t) (which can
be considered as a local Knudsen number).

5



Sergey V. Bogomolov

2.2 Meso scale, moderate Kn

The introduction of a centered measure

q(dθ × dx× dv × dt) = p(dθ × dx× dv × dt)− 1

Kn
m(dθ)λt(dx, dv)dt,

yields the martingale statement:

x1(t) = x1(0) +
∫ t

0
v1(s)ds

v1(t) = v1(0) +
∫ t

0

∫ ∫ ∫
f(θ, x1(s), v1(s), x, v)

1

Kn
m(dθ)λs(dx, dv)ds (8)

+
∫ t

0

∫ ∫ ∫
f(θ, x1(s), v1(s), x, v)q(dθ × dx× dv × ds),

where the last term is the martingale and its characteristic is equal to (page 513 in [16]):

< I >t=
∫ t

0

∫ ∫ ∫
f 2(θ, x1(s), v1(s), x, v)

1

Kn
m(dθ)λs(dx, dv)ds. (9)

Considering the martingale term in (8), let us introduce a random variable

η ≡
∫ t+∆t

t

∫ ∫ ∫
f(θ, x1(s), v1(s), x, v)p(dθ × dx× dv × ds).

Its mathematical expectation

Eη =
∫ t+∆t

t

∫ ∫ ∫
f(θ, x1(s), v1(s), x, v)

1

Kn
m(dθ)λs(dx, dv)ds,

and the square root of the covariance matrix

Dη = (
∫ t+∆t

t

1

Kn
σ2(s)ds)1/2,

where it is denoted that:

σ2(s) ≡
∫ ∫ ∫

f 2(θ, x1(s), v1(s), x, v)m(dθ)λs(dx, dv). (10)

Let us consider the random variable

ζ ≡ Dη−1 · (η − Eη),

where Eη = O(1/Kn), Dη = O(1/
√
Kn). We assume that in accordance with the central

limit theorem when the Knudsen number tends to zero it tends to the standard normally
distributed vector N(0, 1). Then, the martingale term in (8) can be represented as:

(
∫ t+∆t

t

1

Kn
σ2(s)ds)1/2 ·N(0, 1),
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and if ∆t1/2 is small it can be approximated by the value

(
1

Kn
σ2(t))1/2 ·∆w(t),

where ∆w(t) is the increment of a standard three – dimensional Wiener process.
Consider also the representation∫ ∫ ∫

f(θ, x1(s), (s), x, v)m(dθ)λs(dx, dv) ≡ −a(| c |)c,

where c = v1 − V is the thermal velocity and a(·) is generally an operator. This rep-
resentation naturally arises, for example, for a hard – sphere gas. Under a simplifying
assumption about the form of λs(dx, dv), this eightfold integral can be evaluated and the
operator a(·) becomes a scalar function of the thermal velocity magnitude.

Therefore, our hypothesis consists of the assumption that this rather complex random
process for small Knudsen numbers will be close to the increment in the diffusion process.
Then the system (7) takes the following form:

dx1(t) = v1(t)dt,

dv1(t) =
1

Kn
a(x1(t), v1(t), t)dt+

1√
Kn

σ(x1(t), v1(t), t)dw(t), (11)

where σ = (σ2)1/2 (the matrix σ is a square root of σ2) and the stochastic differentials
are understood in the sense of Ito.

A more accurate system of stochastic differential equations with respect to the asymp-
totics of the quantity 1/Kn can be obtained by using Berry – Essen inequalities for the
approximation of random variable ζ.

The process {x1(t), v1(t)} generates a measure whose density satisfies the Kolmogorov
– Fokker – Planck equation (2), which can be shown on the basis of Ito’s formula:

∂F

∂t
+

3∑
i=1

vi
∂F

∂xi

− 1

Kn

3∑
i=1

∂(ai(F )(vi − Vi)F )

∂vi

=
1

Kn

1

2

3∑
i,j=1

∂2(σ2
ij(F )F )

∂vi∂vj

Following A. V. Skorokhod1 let us transform the second equation in (11):

a

Kn
v1dt =

a

Kn
V dt+

∫ ∫ ∫
f(θ, x1(s), v1(s), x, v)q(dθ × dx× dv × ds)− dv1,

or, taking into account the first equation in (11),

dx1(t) = V dt+ a−1Kn
∫ ∫ ∫

f(θ, x1(s), v1(s), x, v)q(dθ × dx× dv × ds)− a−1Kndv1,

7
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which is a short form of an equation:

x1(t+ ∆t) = x1(t) +
∫ t+∆t

t
V dt

+
∫ t+∆t

t
a−1Kn

∫ ∫ ∫
f(θ, x1(s), v1(s), x, v)q(dθ × dx× dv × ds) (12)

−
∫ t+∆t

t
a−1Kndv1.

Let us make some simplifying remarks concerning the last term in equation (12) for
the increment of space position of the particle under consideration:∫ t+∆t

t
a−1Kndv1.

At small Knudsen numbers, dv1 can be represented as a function of thermal velocity c:

dv1(t) = − 1

Kn
a(c)cdt+

1√
Kn

σ(c)dw(t),

The function dv1, standing under the integral sign, is a fast changing in time random
value according to the sense of diffusion approximation. That integral term influence
the increment of particle space position under action of chaotically moving surrounding
medium. That is why it is possible to take for dv1 under the integral sign its average
value – zero.

Therefore, we obtain the system

dx1(t) = V dt+
√
Kn

[
a−1(c) (σ(c)− σ(0))

]
dw(t),

dv1(t) = − 1

Kn
a(c)(v(t)− V )dt+

1√
Kn

σ(c)dw(t), (13)

Denote: σ̃ ≡ σ(c)− σ(0).
The process {x1(t), v1(t)} generates a measure λt(dx, dv) whose density F (x, v, t) sat-

isfies the Kolmogorov – Fokker – Planck equation (we conserve the same notations as for
micro case inspite of that the measure is generated by diffusion and not Poisson process
but still taking place in phase space):

∂F

∂t
+

3∑
i=1

∂ViF

∂xi

− 1

Kn

3∑
i=1

∂(ai(F )(vi − Vi)F )

∂vi

=
1

Kn

1

2

3∑
i,j=1

∂2(σ̃2
ij(F )F )

∂vi∂vj

+
1

2

3∑
i,j=1

[
∂2(a−1

√
Knσ̃)2

ijF

∂xi∂xj

+ 2
∂2(a−1σ̃)ijσ̃jiF

∂xi∂vj

], (14)

where the additional second term in the righthand side is small regarding Kn in compar-
ison to the first one.
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The further simplification of the model (11), (13), (2), (14) can be attained by cal-
culating the drift vector in phase space and the covariance matrix (10). This can be
successfully done for a hard – sphere gas if under the integral in expression (11) the local
Maxwellian is taken as the density measure of λt(dx, dv).

We calculate the value σ2
xx (the calculation of the drift vector a is similar and easier):

σ2
xx(x1(t), v1(t), t) =

∫ ∫ ∫
f 2

x(θ, x1(t), v1(t), x, v)m(dθ)λt(dx, dv). (15)

In order to obtain the expression for the x–component of the step function fx of the local
spherical coordinate system, variables should be substituted for the component of the unit
vector ξx. In the global spherical coordinate system let the coordinates be determined by
the polar angle ψ and the azimuth angle δ. Then, the conversion from the global system
to the local one

ξ = A · ξloc

is performed by means of the rotation matrix

cos δ cosψ − sinψ sin δ cosψ

A = cos δ sinψ cosψ sin δ sinψ

sin δ 0 cos δ

which is the product of the rotation matrix by the angle ψ about the axis z, and then by
the angle δ about the axis y:

A = A3(ψ) · A2(δ).

Hence,
ξx = cos ε sinα cos δ cosψ − sin ε sinα sinψ + cosα sin δ cosψ,

fx = ξx | v1 − v | cosα.

Therefore, for the hard – sphere gas and the local Maxwellian distribution

σ2
xx = (1/2)

∫
R3

∫ π

0

∫ 2π

0
ξ2
x | v1 − v |3 cos2 α | cosα | FM sinαdεdαd3v.

The multiplying factor 1/2 arises because the integral must be taken over the half – sphere
(v−v1, ξ) > 0, which implies the counter motion of two molecules (resulting in a collision),
and it is more convenient to take it over the entire sphere. This is a standard technique
for the derivation of the Boltzmann equation.

The integration over the angles ε and α accompanied by the introduction of the desig-
nation v − v1 ≡ w and v1 − V1 ≡ c (thermal velocity) yields:

σ2
xx =

π

4

1

π3/2

∫
R3
| w |3 (1/3 + sin2 δ cos2 ψ)exp(−(c− w)2)d3w,

9
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or

σ2
xx =

1

4π1/2

∫
R3

((1/3) | w |3 +w2
x | w |)exp(−(c− w)2)d3w.

Incidentally, the same expression will be obtained if the representation of molecule collision
is used in terms of the impact parameter and the scattering angle, and the tensor dimen-
sionality considerations are employed, as was done by B.A. Trubnikov13 for the Coulomb
interaction in the paper, where the detailed discussion of the physical interpretation for
the obtained equations is also given.

In order to calculate this integral, we change over to the coordinate system where the
axis z coincides with the vector c of thermal velocity. Such a transition is performed by
means of the same rotation matrix A, with the angles ψ and δ being substituted for the
angles ϕ and θ, which determine the vector c in the global coordinate system:

w = A · wloc, wloc ≡ {x, y, z}T .

Then,
wx = cos θ cosϕ x− sinϕ y + sin θ cosϕ z.

In the new system, the vector c = {0, 0, |c|}T , and the vector lengths and the element
of the three – dimensional integration will not change. By computing∫ ∫ ∫ ∞

−∞
x2
√
x2 + y2 + z2 e−x2−y2(|c|−z)2dxdydz

by means of the transition to the cylindrical coordinate system

=
π

4

∫ ∞

−∞
[3 | z | +

√
πez2

(3/2− z2)(1− erf(| z |))] e−(|c|−z)2dz,

where

erf(β) ≡ 2/
√
π
∫ β

0
e−γ2

dγ,

and changing the order of integration over z and γ

=
π

4
[
√
πerf(| c |)(2 | c | + 2

| c |
− 1

2 | c |3
) + e−c2(2 +

2

c2
)],

and, ∫ ∫ ∫ ∞

−∞
z2
√
x2 + y2 + z2 e−x2−y2(|c|−z)2dxdydz

= [
√
πerf(| c |)(| c |3 +2 | c | − 1

4 | c |
+

1

4 | c |3
) + e−c2(c2 + 3/2− 1

2c2
)],

we obtain the expression for σ2
xx presented in the beginning of this article. σ2

xy and other
components of the diffusion matrix are calculated absolutely similarly.

10
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2.3 Macro scale, small Kn

Under some simplifying assumptions, the operator a(·) becomes a scalar function of
the thermal velocity magnitude and the eightfold integrals a(·) and σ2(·) can be evaluated
as it was shown just above. Moreover, further simplifications lead to a(·) = γ(x, t), σ(·) =
D(x, t) and to the stochastic quasi – gas dynamic equations for this set of coefficients.

Specifically, we need to construct equations for the measures generated by the stochastic
processes {x1(t)} and {v1(t)}. The physical meaning of these measures is the evolution
of the mass, momentum and energy distributions. By the help of Ito’s formula, it can be
shown that their densities (ρ(x, t), ρV (x, t), ρE(x, t)) satisfy the system:

∂

∂t
ρ+

3∑
j=1

∂

∂xj

(ρVj) =
1

2

3∑
i,j=1

∂2

∂xi∂xj

(Kn
D2

ij

γ2
ρ),

∂

∂t
(ρVi) +

3∑
j=1

∂

∂xj

(VjρVi) = −
3∑

j=1

∂

∂xj

(
D2

ij

γ
ρ) +

1

2

3∑
k,j=1

∂2

∂xk∂xj

(Kn
D2

kj

γ2
ρVi), (16)

i = 1, 2, 3,

∂ρE

∂t
+

3∑
j=1

∂

∂xj

(VjρE) = −
3∑

j=1

∂

∂xj

(
D2

ij

γ
ρVj) +

1

2

3∑
i,j=1

∂2

∂xi∂xj

(Kn
D2

ij

γ2
ρE),

which holds for small Knudsen numbers. The righthand side reflects the “trace” left by
the thermal motion of molecules.

Let us define a stochastic empirical measure µt(dx) by an expression: for any function

ψ ∈ C(2)
b (R3) (a space of continuously differentiable finite functions)

∫
ψ(x)µt(dx) =

1

N

N∑
l=1

ψ(xl(t)), (17)

more precisely:

∀ψ ∈ C(2)
b (R3);∀D ∈ R3 :

∫
D
ψ(x)µt(dx) =

1

N

N∑
l=1

ψ(xl(t))χ(xl(t) ∈ D).

That expression, connecting the measure distribution to realizations of particle posi-
tions at time moment t, is a quadrature formula (the weights are known and the nodes
are parameters) if to read if from left to right.

For obtaining an equation for measure µt(dx), let us take a stochastic differential from
both of two sides of (17).

We’ll use Ito’s formula for complex function differentiation12:

dψ(x) =
3∑

i=1

∂ψ

∂xi

dxi +
1

2

3∑
i,j=1

∂2ψ

∂xi∂xj

dxidxj,

11
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where stochastic differentials dxi are taken from the system (13):

dxi = Vidt+
√
Kn

3∑
j=1

Dij −D
(0)
ij

γi

 dwj, (i = 1, 2, 3),

Dij −D
(0)
ij

γi

 ≡ ˜(D
γ

)
ij

,

and because of definition of a standard three – dimensional Wiener process increment,
the smallness of which is

√
dt:

dwidwj = δijdt, dwidt = 0, dt2 = 0, (18)

δij – Kronecker symbol, that leads to

dxidxj = Kn
3∑

m,n=1

Dim −D
(0)
im

γi

Djn −D
(0)
jn

γj

 δmndt

= Kn
3∑

m=1

Dim −D
(0)
im

γi

Djm −D
(0)
jm

γj

 dt
= Kn

1

γiγj

(
D2

ij −
3∑

m=1

(
D

(0)
imDjm +D

(0)
jmDim

)
+ (D

(0)
ij )2

)
dt

≡ Kn
˜(D2

γ2

)
ij

dt,

which means that Ito’s formula in our case turns out to be:

dψ(x) =

 3∑
i=1

Vi
∂ψ

∂xi

+
1

2
Kn

3∑
i,j=1

˜(D2

γ2

)
ij

∂2ψ

∂xi∂xj

 dt
+
√
Kn

3∑
i,j=1

˜(D
γ

)
ij

∂ψ

∂xi

dwj. (19)

Then we get the stochastic differential from both of two sides (17):

d
∫
ψ(x)µt(dx) =

1

N

N∑
l=1


 3∑

i=1

Vi
∂ψ

∂xi

+
1

2
Kn

3∑
i,j=1

˜(D2

γ2

)
ij

∂2ψ

∂xi∂xj

 (xl(t))

 dt
+

1

N

N∑
l=1

√Kn
 3∑

i,j=1

˜(D
γ

)
ij

∂ψ

∂xi

 (xl(t))dwj

 ,

12
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or, applying the formula (17) from right to left for the righthand side of the last expression,

d
∫
ψ(x)µt(dx)

=
∫ 

 3∑
i=1

Vi(x, t)
∂ψ

∂xi

(x) +
1

2
Kn(x, t)

3∑
i,j=1

˜(D2

γ2

)
ij

(x, t)
∂2ψ

∂xi∂xj

(x)

 dt
µt(dx)

+
∫ √Kn(x, t)

 3∑
i,j=1

˜(D
γ

)
ij

(x, t)
∂ψ

∂xi

(x)

 dwj

µt(dx).

Assuming existence of a density ρ(x, t) of stochastic empirical measure µt(dx), tak-
ing the usual steps while deriving from a generalizied equation an equation in partial
derivatives, having integrated by parts one or two times in appropriate places, we get a
stochastic continuity equation in the form:

dρ =

− 3∑
i=1

∂

∂xi

(Viρ) +
1

2

3∑
i,j=1

∂2

∂xi∂xj

Kn ˜(D2

γ2

)
ij

ρ

 dt
−

3∑
i,j=1

∂

∂xi

√Kn ˜(D
γ

)
ij

ρ

 dwj,

and having averaged over the time we get a deterministic continuity equation for averaged
over the time deterministic mass density ρ(x, t):

∂ρ

∂t
+

3∑
i=1

∂

∂xi

(
Viρ

)
=

1

2

3∑
i,j=1

∂2

∂xi∂xj

Kn ˜(D2

γ2

)
ij

ρ

 ,
which is valid for small Knudsen numbers. The righthand side reflects the “trace” left by
the thermal motion of molecules, or self – diffusion.

It is natural to regard the random values ρ, Vi and
˜(D2

γ2

)
ij

(which depends on thermal

velocity c) independent, that gives the product of averaged values after the averaging
procedure. If we assume that the time averaging leads to the values using by traditional
gas dynamics, then we get a continuity equation taking into account the self – diffusion:

∂ρ

∂t
+

3∑
i=1

∂

∂xi

(Viρ) =
1

2

3∑
i,j=1

∂2

∂xi∂xj

Kn ˜(D2

γ2

)
ij

ρ

 .
Let us get equations for an impulse and its density, connecting an impulse with a vector

measure νt(dx) by: ∑
l:xl∈D

vlml =
∫

D
νt(dx),

13
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or, in generalized form:

∀ψ ∈ C(2)
b (R3) :

∫
ψ(x)νt,i(dx) =

1

N

N∑
l=1

vi(xl(t))ψ(xl(t)) (i = 1, 2, 3), (20)

considering the process v(t), the solution of (13), as a function of x(t).
Let us take a stochastic differential from both of two sides of that equality.
We’ll need a stochastic formula of product differentiation12

d(viψ) = ψdvi + vidψ + dvidψ, (i = 1, 2, 3).

The stochastic differentials dvi are the equations of the system (13):

dvi = − γi

Kn
(vi − Vi)dt+

1√
Kn

3∑
j=1

Dijdwj, (i = 1, 2, 3).

Applying Ito’s formula (19) and the rules (18), calculate

dvidψ =

− γi

Kn
(vi − Vi)dt+

1√
Kn

3∑
j=1

Dijdwj


 3∑

i=1

Vi
∂ψ

∂xi

+
1

2
Kn

3∑
i,j=1

˜(D2

γ2

)
ij

∂2ψ

∂xi∂xj

 dt+
√
Kn

3∑
i,j=1

˜(D
γ

)
ij

∂ψ

∂xi

dwj


=

3∑
j=1

Dijdwj

3∑
m,n=1

˜(D
γ

)
mn

∂ψ

∂xm

dwn

=
3∑

j=1

3∑
m,n=1

Dij

˜(D
γ

)
mn

∂ψ

∂xm

δjndt

=
3∑

j=1

3∑
m=1

Dij

˜(D
γ

)
mj

∂ψ

∂xm

dt =
3∑

m=1

D2
im

γm

−
3∑

j=1

Dij

D
(0)
mj

γm

 ∂ψ

∂xm

dt

≡
3∑

m=1

˜(D2

γ

)
im

∂ψ

∂xm

dt. (21)

Rewrite as well

ψdvi =
(
−γivi

Kn
+
γiVi

Kn

)
ψdt+

1√
Kn

3∑
n=1

Dinψdwn,

vidψ = vi

 3∑
m=1

Vm
∂ψ

∂xm

+
1

2
Kn

3∑
m,n=1

˜(D2

γ2

)
mn

∂2ψ

∂xm∂xn

 dt
+vi

√
Kn

3∑
m,n=1

˜(D
γ

)
mn

∂ψ

∂xm

dwn.

14



Sergey V. Bogomolov

Then

d(viψ) =
(
−γivi

Kn
+
γiVi

Kn

)
ψdt

+

vi

 3∑
m=1

Vm
∂ψ

∂xm

+
1

2
Kn

3∑
m,n=1

˜(D2

γ2

)
mn

∂2ψ

∂xm∂xn

+
3∑

m=1

˜(D2

γ

)
im

∂ψ

∂xm

 dt
+

1√
Kn

3∑
n=1

Dinψdwn + vi

√
Kn

3∑
m,n=1

˜(D
γ

)
mn

∂ψ

∂xm

dwn.

Therefore, the stochastic differential from both of two sides of that equality (20) is:

d
∫
ψ(x)νt,i(dx) =

1

N

N∑
l=1

{[
−γivi

Kn
+
γiVi

Kn

]
(xl(t))

}
dt

+
1

N

N∑
l=1


vi

3∑
m=1

Vm
∂ψ

∂xm

+
3∑

m=1

˜(D2

γ

)
im

∂ψ

∂xm

 (xl(t))

 dt
+

1

N

N∑
l=1


vi

1

2
Kn

3∑
m,n=1

˜(D2

γ2

)
mn

∂2ψ

∂xm∂xn

 (xl(t))

 dt
+

1

N

N∑
l=1


 1√

Kn

3∑
n=1

Dinψdwn + vi

√
Kn

3∑
m,n=1

˜(D
γ

)
mn

∂ψ

∂xm

dwn

 (xl(t))

 ,
Remembering the definitions of the measures µt(dx) and νt(dx), we get the equation

for the measure νt,i(dx):

d
∫
ψ(x)νt,i(dx) =

[
−
∫ γi

Kn
ψνt,i(dx) +

∫ γi

Kn
ψVi(x, t)µt(dx)

]
dt

+

 3∑
m=1

∫
Vm

∂ψ

∂xm

νt,i(dx) +
3∑

m=1

∫ ˜(D2

γ

)
im

∂ψ

∂xm

µt(dx)

 dt
+

1

2

3∑
m,n=1

∫
Kn

˜(D2

γ2

)
mn

∂2ψ

∂xm∂xn

νt,i(dx)dt

+
3∑

n=1

∫ 1√
Kn

Dinψµt(dx)dwn +
3∑

m,n=1

∫ √
Kn

˜(D
γ

)
mn

∂ψ

∂xm

νt,i(dx)dwn.

Denoting as ρVi(x, t) a density of the measure νt,i(dx) and integrating by parts one
or two times in appropriate places, we get a stochastic differential equation which is a
stochastic analogue of Navier – Stokes equation:

d(ρVi) = −
3∑

m=1

∂

∂xm

(VmρVi) dt−
3∑

m=1

∂

∂xm

 ˜(D2

γ

)
im

ρ

 dt
15
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+
1

2

3∑
m,n=1

∂2

∂xm∂xn

Kn ˜(D2

γ2

)
mn

ρVi

 dt
+

3∑
n=1

1√
Kn

Dinρdwn +
3∑

m,n=1

∂

∂xm

√Kn ˜(D
γ

)
mn

ρVi

 dwn,

if Knudsen numbers are small.
Taking mathematical expectation, at the same basis as at derivation of deterministic

continuity equation with self – diffusion, we get deterministic quasi gas dynamics equations
for the impulse density:

∂

∂t
(ρVi) +

3∑
m=1

∂

∂xm

(VmρVi) = −
3∑

m=1

∂

∂xm

 ˜(D2

γ

)
im

ρ


+

1

2

3∑
m,n=1

∂2

∂xm∂xn

Kn ˜(D2

γ2

)
mn

ρVi

 , (i = 1, 2, 3).

Let us get equations for an energy.
Define a measure εt(dx):

∀ψ ∈ C(2)
b (R3) :

∫
ψ(x)εt(dx) =

1

N

N∑
l=1

ψ(xl(t))
3∑

i=1

v2
i

2
(xl(t)). (22)

Take the stochastic formula of product differentiation

d(
v2

i

2
ψ) = ψd(

v2
i

2
) +

v2
i

2
dψ + d(

v2
i

2
)dψ,

d(
v2

i

2
) = vidvi +

1

2
(dvi)

2,

the system (13), Ito’s formula (19), expressions (18):

1

2
(dvi)

2 =
1

2Kn

3∑
n=1

Dindwn

3∑
m=1

Dimdwm =
1

2

D2
ii

Kn
dt,

the formula (21):

dvidψ =
3∑

m=1

˜(D2

γ

)
im

∂ψ

∂xm

dt,

16
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d(
v2

i

2
ψ) = ψvidvi +

v2
i

2
dψ + vidvidψ + ψ

1

2

D2
ii

Kn
dt

= ψ

[(
−γiv

2
i

Kn
+
γiviVi

Kn
+

1

2

D2
ii

Kn

)
dt+

1√
Kn

3∑
m=1

Dimdwm

]

+
v2

i

2

 3∑
m=1

Vm
∂ψ

∂xm

+
1

2
Kn

3∑
m,n=1

˜(D2

γ2

)
mn

∂2ψ

∂xm∂xn

 dt
+
v2

i

2

√
Kn

3∑
m,n=1

˜(D
γ

)
mn

∂ψ

∂xm

dwn

+vi

3∑
m=1

˜(D2

γ

)
im

∂ψ

∂xm

dt.

The stochastic differentiation of the formula (22) with account to the just obtained
expressions leads to an equation for evolution of the expressions εt(dx) (we can put γi = γ):

d
∫
ψ(x)εt(dx)

=

[
−2

∫
ψ
γ

Kn
εt(dx) +

∫
ψ

1

2

3∑
i=1

D2
ii

Kn
µt(dx) +

∫
ψ

3∑
i=1

γ

Kn
Vi(x, t)νt,i(dx)

]
dt

+
∫  3∑

m=1

Vm
∂ψ

∂xm

+
1

2
Kn

3∑
m,n=1

˜(D2

γ2

)
mn

∂2ψ

∂xm∂xn

 εt(dx)dt
+

3∑
i,m=1

˜(D2

γ

)
im

∂ψ

∂xm

νt,i(dx)dt

+
∫
ψ

1√
Kn

3∑
i,m=1

Dimµt(dx)dwm +
∫ √

Kn
3∑

m,n=1

˜(D
γ

)
mn

∂ψ

∂xm

εt(dx)dwn.

Assuming existence of densities ρVi(x, t) and ρE(x, t) of measures νt,i(dx) and εt(dx),
we get for the term inside the first square brackets:

[−
∫
ψ

2γ

Kn

(
ρE −

3∑
i=1

(
ρV 2

i

2
+
D2

ii

4γ
)

)
dx].

For ideal gas, because of the fluctuation – dissipation theorem3, we can write: D2/2γ =
RT (in dimensional form for clearness). That, together with the definition of temperature
and total energy,

ρE =
ρV 2

2
+

3

2
RT

17
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brings zero to this expression after averaging.
Then a stochastic differential equation for energy density looks like

dρE =

− 3∑
j=1

∂

∂xj

(VjρE)−
3∑

i,j=1

∂

∂xj

 ˜(D2

γ

)
ij

ρVi

 dt
+

1

2

 3∑
i,j=1

∂2

∂xi∂xj

Kn ˜(D2

γ2

)
ij

ρE

 dt
+

1√
Kn

3∑
i,m=1

Dimρdwm +
√
Kn

3∑
m,n=1

∂

∂xm

 ˜(D
γ

)
mn

ρE

 dwn,

and its deterministic part

∂ρE

∂t
+

3∑
j=1

∂

∂xj

(VjρE) = −
3∑

i,j=1

∂

∂xj

 ˜(D2

γ

)
ij

ρVi


+

1

2

3∑
i,j=1

∂2

∂xi∂xj

Kn ˜(D2

γ2

)
ij

ρE

 ,
if Knudsen numbers are small.

The numerical examples14 give nearly the same results as benchmark Navier – Stokes
calculations in the proper range of parameters.

3 PARTICLE METHODS

The models presented can be used to construct optimal hierarchical shock-capturing
algorithms for gas dynamic simulation based on both stochastic and deterministic particle
methods15.

The well known Monte – Carlo method for solving Boltzmann equation is equal to
numerical realization of system (7) which can be called a stochastic (Poisson) particle
method2.

The system (13), (14) can be solved both by stochastic (Wiener) particle method or
by deterministic particle method for the Kolmogorov – Fokker – Planck equation2.

Solving the system (16) by deterministic particle method15, to our opinion, is more
efficient than the usual difference or FE methods especially for discontinuous 3D cases.
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