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Abstract. An aneurysm is a pathological condition whereby a weakened artery wall may
dilates up to dangerous proportions. One of the most common treatments consists of the
insertion of a stent graft, which is a medical device introduced into the artery lumen in
order to diminish the pressure on the aneurysm wall and so avoiding its rupture.

In this article we perform the simulation of the fluid-structure interaction between the
blood, the artery wall and the stent. We consider the blood modeled by incompressible
Navier-Stokes equations in ALE formulation, while the solid parts are modeled using non-
linear shells in a Lagrangian framework. We suppose the stent being perfectly matched
with the artery, i.e., with no filtrations or endoleaks, such that we obtain two disconnected
regions of fluid by the stent wall.

The main difficulty in this problem is the numerical solution for the isolated portion of
fluid, where the explicit coupling with standard Dirichlet-Neumann boundary conditions
may lead to non uniqueness for the intra-aneurysm pressure and also to violate the di-
vergence free condition. To address this issue we use Robin-Neumann conditions for the
coupling, which allow us not only to obtain successful numerical simulations but also a less
sensitive scheme to the added-mass effect and a more stable and robust iterative technique
than the Dirichlet-Neumann procedure.

We present numerical evidence of the well-posedeness of this technique and examples
showing the effect of the stent on the aneurysm wall.
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1 INTRODUCTION

The aortic aneurysm is a bulbous enlargement of the aorta that eventually may burst.
Among the different types of aortic aneurysms the most common is the abdominal one
(AAA), present in approximately 5%-7% of people over the age of 60 (see e.g. [6]). Even
though the AAA rupture represents an important cardiovascular risk, a completely reliable
technique to predict its behavior is not yet available [10]. To improve and simplify the
follow-up of AAA, a device allowing the remote monitoring of the pressure is currently
in development [8]. The computer simulations presented in this work are a first step to
contribute to this emerging technique.

This work aims at the numerical simulation of stented AAA, where two fluid-structure
interaction problems have to be worked out: the artery-blood flow and stent graft-blood
flow. To address it, we focus on partitioned algorithms, i.e., one solver for the fluid and
another one for the solid, whose main advantage lies in the fact that the fluid and the solid
can be solved separately, reusing some existing code and giving the possibility of parallelize
resources. The classical strategy to enforce the continuity in velocity and surface tension
at the interfaces is to solve the FSI through the Dirichlet-Neumann approach, but in this
case, however, the direct imposition of displacement conditions on the interface may be
inconsistent with the divergence-free condition in the fluid region enclosed by elastic walls.

Figure 1: Simplified scheme with description of the geometry: Half artery view and its solid walls.

Instead of using standard coupling conditions at the interface, that could make difficult
the computations in the case of multiple interacting surfaces, our strategy follows that
of [3], where a Robin-Neumann interface condition (RN) is introduced, namely, Robin in
the fluid side and Neumann in the solid one. As reported in [1, 3], the RN shows good
convergence properties and insensitivity with respect to the added-mass effect, which
plays a fundamental role in the simulation of blood flow in arteries.
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The outline of the paper is as follows. In section 2 we introduce the mathematical
model of the FSI. In section 3 an algorithm is presented to solve numerically the FSI
problem through the Robin-Neumann interface condition. Section 4 is devoted to some
numerical examples and finally, some remarks and final comments in the section 5.

2 GOVERNING EQUATIONS

The nonlinear fluid-structure model follows [5, 3], whereby we consider the fluid-solid
domain composed by Ω(t) = Ωf (t) ∪ Ωs(t), whose fluid region is contained in Ωf (t) and
the solid in Ωs(t), both depending on time t. The outgoing normal vector to the solid
domain is ns, while for the fluid is nf . The surface where the interaction occurs will be
denoted by Σ(t) = ∂Ωf (t) ∩ ∂Ωs(t).

2.1 Structure model

In a Lagrangian framework, the variables in the solid are defined in the reference
domain Ω̂s = Ωs(0). We will denote the quantities with the hat symbol ·̂ when they
are associated to that fixed domain. The deformation at time t is described through
the deformation field ϕ : Ω̂s × (0, T ) → Ω(t), T > 0 being a finite bound in time. The
deformation gradient is F s = I + ∇x̂ϕ and its jacobian Js = detF s. The boundary of
the solid body is composed by ∂Ω̂s = Σ̂ ∪ Γ̂d ∪ Γ̂n, with Γd and Γ̂n denotes the Dirichlet
(clamped) and the Neumann (stress-free) boundary, respectively.

The displacement of the solid d is obtained by solving the following system in a La-
grangian framework:

ρs∂ttd − div
(
Jsσs(d)(F f )−T

)
= 0 in Ω̂s,

d = 0 on Γ̂d,

Jsσs(d)(F f )−T ns = 0 on Γ̂n,

∂td(·, 0) = 0 in Ω̂s,


(1)

where ρs represents the density of the solid and σs the Cauchy stress tensor.

2.2 Fluid model

For the fluid, we consider the Navier-Stokes equations in ALE formulation. For the
sake of simplicity, we write down the equations with pressure-type boundary conditions
through p̄:

ρf∂tu + (u − w) · ∇u − divσf (u, p) = 0 in Ωf (t),
divu = 0 in Ωf (t),

σf (u, p)nf = −p̄nf on Γ,

 (2)

where ρf denotes the density of the fluid, u is the velocity and p the pressure. The
term σf represents the Cauchy stress tensor for the fluid having the form σf (u, p) =
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−pI + 2µe(u) and e(u) = 1
2
(∇u + (∇u)T ), µ being the viscosity of the fluid. The field

w corresponds to the fluid domain velocity, obtained as an harmonic extension from the
solid to the fluid domain via solving the homogeneous Laplace problem with w = ∂td as
boundary condition on Σ. We introduce the displacement of the fluid domain obtained by
the extension operator Ext: L2(Σ) → H1(Ωf )3 (that represents the harmonic extension
mentioned above), such that df :=Ext(d|Σ̂). With this, we can write w = ∂td

f in Ωf .

2.3 Coupling conditions

In the continuous level, the coupling between the solid and the fluid concerns the
continuity of velocity and equilibrium of forces through the interface, i.e., the quantities
d, u, p, σs and σf must satisfy

u = ∂td, (3)

σs(d)ns + σf (u, p)nf = 0, (4)

on Σ(t) for any time t ∈ (0, T ).
The RN interface boundary condition consists of a combination of the condition (3)

and (4), which reads

u + α̃σf (u, p)nf = ∂td − α̃σs(d)ns on Σ(t), (5)

then (3) is replaced with (5). The constant parameter α̃ plays the role of compliance of the
solid, relaxing the condition (3) during the sub-iterations. This permits the simultaneous
evaluation of velocities and stresses across the interface, enabling the solver to balance the
efforts in order to satisfy some displacement restrictions, and viceversa, which is crucial
in the assessment of pressure and volume preservation in the case of enclosed fluids.

3 ALGORITHM

In the sequel, the time step is denoted by τ > 0, the time derivative is approximated
through the backward Euler finite difference Dτv

n := (vn − vn−1) /τ. For further details
on the algorithm and discretization presented here, we refer to [3] and [4].

We assume that Ωf,n, Ωs,n, (un, pn) and dn are known at the time t = tn, then the
computation at the new time step n + 1 is obtained by solving

1. Fluid domain update:

df,n+1 = Ext(dn|Σ), wn+1 = Dτd
f,n+1 in Ωf,n, Ωf,n+1 := (I + df,n+1) ◦ Ωf,n.

where df is the displacement associated to the fluid domain, as mentioned in section
2.2.
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2. Implicit step: We define V := H1
Σ(Ωf )3 × L2(Ωf ) × L2(Σ)3 and the operator

F : H1(Ωf )3 × L2(Ωf ) × L2(Σ)3 → V ′

related with the variational formulation of (2) in order to find its solution at the
time step n + 1:

〈F (u, p, λ), (v, q, ξ)〉V,V ′ :=
ρf

τ

(∫
Ωf,n+1

u · v dx −
∫
Ωf,n

u · v dx
)

−ρf
∫
Ωf,n+1

(divwn+1)u · v + ((un − wn+1) · ∇)u · v dx

+
∫
Ωf,n+1

σ(u, p) : e(v) + qdivu dx

+
∫
Σ

(
u − 1

τ
(λ − dn)

)
· ξ ds +

∫
Γ
p̄v · nf ds.

(6)

For the structure sub-problem we introduce, formally, the Neumann-to-Dirichlet operator
S such that, given the pair (u, p) ∈ H1(Ωf )3 × L2(Ωf ) solution to the fluid problem (2),
yields

d|Σ = S(u, p)

by solving (1). The FSI is now expressed via the relation λ = S(u, p).
The strategy to solve the problem

R(u, p) = F (u, p, S(u, p)) = 0 in V ′ (7)

by preconditioning the fluid solver is introduced in [3], which exhibits less sensitivity to
the added-mass effect than the standard DN. The idea is to improve the convergence of
a fixed point algorithm to solve (7) by introducing a simplified structure solver S̃(u, p),
whose associated residual is

R̃(u, p) = F (u, p, S̃(u, p)).

Now, in order to find (u, p) such that R(u, p) = 0, we consider fixed point iterations
between the fluid and the structure indexed by k, following defect-correction (or precon-
ditioned) iterations: Given dk+1 = S(uk, pk), find (uk+1, pk+1) such that

R̃(uk+1, pk+1) = R̃(uk, pk) − R(uk, pk), (8)

which yields

F (uk+1, pk+1, S̃(uk+1, pk+1)) = F (uk, pk, S̃(uk, pk)) − F (uk, pk, S(uk, pk)).
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This implies that

〈R̃(uk+1, pk+1), (v, q, ξ)〉V,V ′ =
∫
Σn+1

1

τ

(
S̃(uk, pk) − S(uk, pk)

)
· ξ ds,

for all (v, q, ξ) ∈ V . One can observe that the preconditioned residual depends on the
misfit between the complete solver and the simplified one evaluated only on the interface.
A good choice for this simplified solid operator is S̃ = −ασf (u, p)nf . Using this one can
obtain (see [3] for further details) that the equation (8) leads to the following coupling
conditions on Σn+1:

σs(dk+1)n
s = −σf (uk, p

n
k)nf ,

σf (uk+1, pk+1)n
f +

τ

α
uk+1 =

τ

α

dk+1 − dn

τ
+ σf (uk, pk)n

f .
(9)

In the equation above, α/τ is identified with α̃ Robin-Neumann boundary condition (5).
We can see this parameter as a penalization, enforcing the continuity in velocity across
the interface (kinematic condition) if α is small.

4 NUMERICAL RESULTS

In order to test the effect of the stent on an artery, we select the simplified geometry
shown in figure 1. The geometry of the aneurysm has of length 8[cm] having a radius
R = 2[cm] while the healthy artery radius is R0 = 1.0[cm]. The mesh has 10206 nodes,
where 1000 of them are lying on the stent-graft and other 1000 on the aneurysm wall.
We set the Young modulus for the aneurysm wall Ewall = 1.2[MPa] and Poisson ratio
ν = 0.5. For the stent we have Estent = 10[MPa] and ν = 0.27. The thickness of the
stent is 0.15[mm] and that of the aneurysm wall is 1.5[mm]. The density of the fluid is
ρf = 1[g/cm3] and that of the solid ρs

wall = 1.12[g/cm3] and ρs
stent = 6.0[g/cm3]. The time

step size is set to τ = 2 × 10−3.
The boundary conditions consider the velocity profile at the inlet as shown in figure 2

and three-element Windkessel model at the outlet.
The structure problem is solved using MIT4 quadrilateral shells while the fluid is solved

with P1 − P1 stabilized finite elements in a tetrahedral mesh (see for example [4]). To
impose continuity in velocity and jump in pressure across the stent structure we follow
[2], where this interface is unfolded creating two portions of fluids communicated through
the stent.

4.1 Some numerical properties

To start with, we consider a test case which is not relevant from the physiological point
of view, but allows to assess some numerical properties. More precisely, we clamp the
aneurysm wall and observe the behavior of the stent as shown in figure 3. The numerical
difficulty related with the intrasac incompressibility constraint (as pointed out in [9]) is
tackled here by imposing a relaxation in the intrasac volume through (9). Therefore,
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Figure 2: Flow at inlet.

the kinematic condition is achieved by minimizing the mismatch in the velocity at the
interface when we solve the fixed-point iterations between the fluid and structure solvers.
This technique permits to preserve the volume with a very good tolerance, as shown in 4
(less than 1% of relative error).

Figure 3: Clamped aneurysm wall test: Deformation of the stent-graft (×2500). The flux goes from left
to right.

As reported in [1, 3], there exists a compromise between α and the convergence rate:
the larger the value of α, the faster the convergence in solving (8), however, the kine-
matic condition is deprecated, needing more fluid-structure iterations to achieve a given
tolerance. For example, in this test, to get a residual less than 10−7, there were needed
about 5 up to 10 FSI iterations when α = 10−7, with α = 10−8 about 15-22 iterations,
but having α = 10−9 one can get more than 50 iterations. Numerical tests indicates that
a good choice is, in this test, closer to α = 10−8.
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Figure 4: Evolution of the intrasac volume.

4.2 Effect of the stent-graft

The effect of the stent is presented in this preliminary result, as observed in figure 5,
where both aneurysm wall and stent are elastic structures with the parameters mentioned
above. To run the simulation with and without stent, firstly setting the basal pressure to
zero and secondly lifting it up to 53.3[kdyn/cm2] (40[mmHg]), regardless the pre-stress
in the artery as a first order approach.
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Figure 5: Maximal pressure on the aneurysm wall: Comparing the effect of the stent.

The stent helps to bear the artery pressure. The peak is 84.8[kdyn/cm2] in the case
without stent-graft, while in the presence of stent we have 70.9[kdyn/cm2], this is about
the half of the peak pressure without stent measuring from the basal pressure.
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5 CONCLUSIONS

We have shown in this work a the Robin-Neumann algorithm can successfully solve
problems with enclosed fluids (also called ballon-type problems). Moreover, it efficiently
handle the added-mass effect, that degrades the performance of most of fluid-structure
algorithm. However its convergence rate is sensitive to the choice of α as reported in
[1, 3].

The simulations confirm that in presence of the stent the intra-sac pressure is dimin-
ished. This technique can also be used to simulate the interaction between intraluminal
thrombus and stent-graft, which will be investigated in a future work.

6 ACKNOWLEDGMENTS

This work has been supported by the project ENDOCOM, funded by the national
research agency (ANR), program TECSAN 2007 (http://www.endocom.upmc.fr/).

REFERENCES

[1] S. Badia, F. Nobile, C. Vergara. Fluid-structure partitioned procedures based on
Robin transmission conditions. J. Comput. Phys., 227 7027–7051 (2008).

[2] M.A. Fernández, J.-F. Gerbeau and V. Martin. Numerical simulation of blood flows
through a porous interface. M2AN Math. Model. Numer. Anal., 42 961-990 (2008).

[3] M.A. Fernández, Y. Maday and J. Mullaert. On the preconditioning of partitioned
semi-implicit fluid-structure coupling, Preprint.

[4] L. Formaggia, A. Quarteroni and A. Veneziani, editors. Modeling, Simulation and
Applications, Vol. 1 Cardiovascular Mathematics. Modeling and simulation of the
circulatory system.Springer (2009).

[5] J.-F. Gerbeau and M. Vidrascu. A quasi-Newton algorithm based on a reduced model
for fluid-structure interactions problems in blood flows, Math. Model. Num. Anal.,
37(4) 631–648 (2003).

[6] C. Kleinstreuer, Z. Li and M.A. Farber. Fluid-structure interaction analyses of
stented Abdominal aortic aneurysms. Annu. Rev. Biomed. Eng., 9 169–204 (2007).

[7] M. Gawenda, S. Winter, G. Jaschke, G. Wassmer, and J. Brunkwall. Endotension is
Influenced by Aneurysm Volume: Experimental Findings. J. Endovasc. Therapy, 10
1091–1096 (2003).

[8] J. Mazeyrat, O. Romain, D. Lautru, et al. Endocom: a wireless endoprosthesis dedi-
cated to the follow-up of abdominal aortic aneurysms, Int. J. Artificial Organs, 32(7),
411-411 (2009).

9



J. Mura, M.-A. Fernández and J.-F. Gerbeau

[9] B. Wolters, M. Rutten, G. Schurink and F. van de Vosse. Computational modelling
of endoleak after endovascular repair of abdominal aortic aneurysms, Int. J. Numer.
Meth. Biomed. Engng. 26 322–335 (2010).

[10] D. Vorp. Biomechanics of abdominal aortic aneurysm. J. Biomech., 40 1887–1902
(2007).

10


