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∗Politenio di Milano,Dipartimento di Matematia, Piazza Leonardo da Vini 32, 20133, Milanmariarita.delua�polimi.itKey words: Cerebral aneurysm, Cerebral arteries, Weakly ompressible materials, Finiteelement, Continuos damage.Abstrat. We developed a C++ �nite element ode for a non-linear multi-mehanismmodel, that is suitable to represent the mehanial behavior of the healthy arterial walland early stage erebral aneurysm formation. A erebral aneurysm is a loalized bulge ofthe arterial wall, resulting from an initial dilatation.The ore of the multi-mehanism model is to onsider the arterial wall made up twomehanisms, related to its two main passive onstituents: elastin and ollagen. Histologi-al studies show that the early stage aneurysm formation is assoiated with the disruptionof elastin, that is found fragmented in the arterial wall. From experimental observations,the elastin atively ontributes to load bearing even at low deformation level, while theollagen network is in a rimped state in its stress free on�guration. For larger defor-mations, the ollagen network strethes out and starts to ontribute to the mehanialbehavior of the arterial wall. The strain energy of the model is additively omposed by twoterms, one related to the �rst mehanism and the other related to the seond one. Theollagen reruitment happens when a threshold deformation is reahed. This threshold isheked at eah time step in eah element of the omputational domain allowing a non-uniform ollagen ativation aross the material. The fragmentation of elastin is modeledby multiplying a damage oe�ient with the stress tensor term related to the �rst meh-anism. This damage oe�ient gradually dereases from one (�rst mehanism ative) tozero (disappearane of �rst mehanism) as funtion of deformation.The ode has been validated on a set of test ases for whih an analytial solution isavailable, showing the expeted behavior. Numerial simulations for more realisti ge-ometries have shown that the omputational multi-mehanism model is able to apture thenon-linearity and inelastiity of the arterial wall, and the early stage aneurysm formation.
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M. de Lua1 INTRODUCTIONA erebral intraranial aneurysm is a foal enlargement of a erebral artery, harater-ized by a saular shape of various dimension, up to 30 mm in diameter 1. The ausesbeneath the pathogenesis, enlargement and rupture of erebral aneurysms are objet ofonsiderable debate 2. Most aneurysms remain asymptomati until rupture that auses aonsequent aneurysmal subarahnoid hemorrhage with inidene of sudden death of the
12 % and rates of fatality from 32 % to 67 % after the hemorrhage 3. The presene of aerebral aneurysm an remain unknown if it never undergoes rupture. The prevaleneof unruptured aneurysms is not known, but it is estimated to be as high as 5 % of thepopulation 4. It is obvious the need of understanding the natural history of these lesionsin order to prevent or treat them. It is still unlear why aneurysms grow and enlarge, butit is well aepted that haemodynamial and mehanial fators play an important role 5.New image tehniques supply geometrial reonstrution of arterial vessels from Com-puted Tomography san 6 7, suitable to be the substrate for numerial simulations. Manyomputational works fous on the haemodynamis of blood �ow inside the aneurysm 8 910 11, while few are devoted to numerial simulation of aneurysm formation and growth12. The aim of this work is to implement a new damage multi-mehanism onstitutivelaw for erebral artery to simulate the early stage of erebral aneurysm formation. Themain feature of the model adopted in this paper is to onsider the arterial wall madeup two material onstituents: elastin and ollagen. The mehanial behavior of erebralarterial wall is based on the strain of these two passive onstituents, following the modelpresented by Robertson and oworkers13 14 15.Histologial studies show that the early stage aneurysm formation is assoiated with thedisruption of elastin, that is found fragmented in the arterial wall 16. From experimentalobservations, the elastin atively ontributes to load bearing, even at low deformationlevel, while the ollagen network is in a rimped state in its stress-free on�guration. Forlarger deformations, the ollagen network strethes out and starts to ontribute to themehanial behavior of the arterial wall 17.The strain energy of the model is here additively omposed in two terms, one relatedto the �rst omponent and the other related to the seond one. Eah onstituent anbe modeled as Neo-Hookean or exponential material. Both omponents are onsideredweakly ompressible 18 so that in the strain energy funtion appears a term penalizingbulk ompression. The resulting balane of linear momentum system is strongly non-linear. The disretization of the omputational domain is made of tetrahedra and the �niteelement formulation is based on linear elements. The orresponding non-linear algebraisystem has been solved by Newton-Raphson method with exat Jaobian omputation.2 KINEMATICS OF A MULTI-MECHANISM MODELIn this setion we ollet the basi notions of kinematis of ontinuum mehanis neededto introdue the multi-mehanism theory. In this model we onsider two mehanisms: the2



M. de Lua
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x1Figure 1: The two referene on�guration of the model: Ω1 is related to the elastin mehanismand Ω2 to the ollagen mehanism. Ω(t) is the urrent on�guration.elastin omponent of arterial wall representative of the �rst mehanism, while the ollagenomponent represents the seond mehanism and enters the model when some thresholddeformation is reahed.Let us onsider a body B, and a bounded domain Ω1 ∈ R3, whih represents thevolume oupied by the body in its referene, stress free, on�guration. Assoiated with
Ω1 there is a time referene frame, so that the body is in its referene on�guration attime t = t1. At this stage the position of a material point P1 ∈ Ω1 is identi�ed by thevetor X1 as shown in �gure 1.During the motion, the body B leaves its undeformed state to reah a urrent on�g-uration Ω(t), t > t1, where the position vetor of a material point is x = χ1(X1, t). Thevetor funtion χ1(X1, t) is a smooth, single-valued funtion, invertible and ontinuouslydi�erentiable with respet to its arguments many times as required. The deformationgradient related to this motion is:

F1(X1, t) =
∂x(X1, t)

∂X1

=
∂χ1(X1, t)

∂X1

, (1)where the subsript �1� denotes all the quantities evaluated in the referene on�guration
Ω1.During this �rst stage of the deformation, only elastin ontributes to the mehanialbehavior of the body, so that the stress tensor depends only on F1(X1, t), like a standardelasti material.The strain energy funtion W per unit volume, in the referene on�guration Ω1, is

W (t) = W1(F1(X1, t)). (2)3



M. de LuaWhen the body reahes on�guration Ω2 = Ω(t2) the reruitment of ollagen �bersours. As the body deforms further, orresponding to inreased values of deformation,both mehanisms are ative and ontribute to load bearing. Adopting now Ω2 as a refer-ene on�guration for the seond mehanism, a material point position, in suh refereneon�guration, is identi�ed by the position vetor:
X2 = x(X1, t2) = χ1(X1, t2), (3)and, in the urrent on�guration Ω(t), t > t2, the position of a material partile isrepresented by the position vetor:

x = χ2(X2, t − t2), (4)where the vetor funtion χ2(X2, t − t2) as well, is a smooth, single-valued funtion,invertible and ontinuously di�erentiable with respet to its arguments many times asrequired. If we de�ne a new referene time frame t′ in Ω2 suh that t′ = t − t2, the (4)beomes x = χ2(X2, t
′), and the deformation gradient that desribes the motion from thereferene on�guration Ω2 is:

F2(X2, t
′) =

∂x(X2, t
′)

∂X2
=

∂χ2(X2, t
′)

∂X2
, (5)where now the subsript index �2� denotes all the variables with respet to Ω2.An in�nitesimal displaement dx, in the urrent on�guration Ω(t) an be related toboth referene on�gurations, as followsdx = F1(X1, t)dX1 = F2(X2, t

′)dX2. (6)By means of (6) and (3) we an �nd the relation between the deformation gradients
F2(X2, t

′) = F1(X1, t)F
−1
1 (X1, t2), (7)where the tensor F

−1
1 (X1, t2) is known. We an now ompute the determinant of eahterm of equation (7) as
det(F2(X2, t

′)) = det(F1(X1, t)) det(F−1
1 (X1, t2)). (8)If we denote J2(t

′) = det(F2(X2, t
′)) and J1(t) = det(F1(X1, t)), we have the relation

J2(t
′) = J1(t)

(

J1(t2)
)−1

, (9)where (

J1(t2)
)−1 is related to the referene on�guration Ω2 and it is a known salar valueonstant in time. 4



M. de LuaThe in�nitesimal volume transformation among all on�gurations isdΩ(t) = J1(t)dΩ1 = J2(t
′)dΩ2, (10)so that the relation between an in�nitesimal volume element in Ω1 and Ω2 reads

dΩ2 = J1(t)
(

J2(t
′)
)−1dΩ1, (11)and from (9) we �nally have

dΩ2 = J1(t2)dΩ1. (12)After ollagen reruitment, the strain energy funtion W assoiated to the hyperelastimaterial has ontribution from both mehanisms
W (t) = W1,2(F1(X1, t),F2(X2, t

′)). (13)When a seond ritial value of deformation is reahed, we hypothesize that elastin startsto degrade, and the �rst mehanism is weakened.Before elastin breakage happens, the material behavior is purely elasti, i.e. afterunloading it is able to reover the initial on�guration Ω1. After the irreversible damage,the material is no more able to reover the on�guration Ω1 in the unloading stage , but iteventually reahes another referene on�guration Ω̂. This on�guration depends on theentity of the elastin damage. In partiular, when all the elastin is broken, Ω̂ orrespondsto Ω2, only due to relaxed ollagen �bers.
W1 and W2 have to be invariant with respet to superimposed rigid rotations relativeto the orrespondent referene on�guration Ω1 and Ω2. The most general strain energyfuntions satisfying the invariane requirements are expressed by

W1 = W̃1(C1), and W2 = W̃2(C2), (14)where C1 and C2 are the right Cauhy-Green tensors of the �rst and seond mehanism,respetively
C1 = F

T
1 F1, and C2 = F

T
2 F2. (15)With a further hypothesis of isotropy, without loss in generality, the strain energyfuntions take the form

W1 = W̌1(I1, II1, III1), and W2 = W̌2(I2, II2, III2), (16)where (I1, II1, III1) and (I2, II2, III2) are the prinipal invariants of C1 and C2. Theisotropy hypothesis is de�nitely aeptable for elastin mehanism. Collagen �bers areinstead arranged with a spei� orientation through the arterial wall and we should intro-due in W2 a dependene to aount for the anisotropy of �bers 14. As the fous of thiswork is the implementation of the multi-mehanism model, at the moment we aept theisotropy hypothesis for ollagen too, with future perspetive of orreting it.5



M. de LuaThe last assumption is that the two mehanisms are independent, so that the strainenergy funtion when both elastin and ollagen are ative is
W1,2 = W1 + W2. (17)Beause the two mehanisms represent the behavior of elastin and ollagen, respetively,this assumption is largely supported by the fat that both materials are found in distintlayers in the arterial wall 19.2.1 Strain Energy FuntionLet us observe that W1 and W2 are strain energy funtions per unit volume de�nedin the referene on�guration Ω1 and Ω2, respetively. In order to have a omplete La-grangian desription in terms of energy of the multi-mehanism model, we need to referboth the energies to only one referene on�guration.By means of (10), the total energy in the urrent on�guration, when both mehanismsare ative, is expressed by

Utot =

∫

Ω(t)

J−1
1 (t)W1dΩ +

∫

Ω(t)

J−1
2 (t′)W2dΩ, (18)suh that

U1 =

∫

Ω(t)

J−1
1 (t)W1dΩ, and U2 =

∫

Ω(t)

J−1
2 (t′)W2dΩ, (19)and U1 is the energy assoiated to the �rst mehanism and U2 to the seond. If we expressthe total energy with respet to the referene on�guration Ω1, from equation (18), bymeans of the relation (12), we have

Utot =

∫

Ω1

W1dΩ1 +

∫

Ω1

J−1
2 (t′)J1(t)W2dΩ1. (20)The insertion of relation (9) in the previous one gives

Utot =

∫

Ω1

W1dΩ1 +

∫

Ω1

J1(t2)W2dΩ1, (21)where we reall that J1(t2) is known after the ollagen reruitment has ourred. If wede�ne Wtot as the total strain energy per unite volume in Ω1, suh that
Utot =

∫

Ω1

WtotdΩ1, (22)beause all the integrals are referred to the volume oupied by the body in the refereneon�guration Ω1, when both mehanism are ative, we have
Wtot = W1 + J1(t2)W2. (23)6



M. de Lua3 STRESS AND ELASTICITY TENSORSIn this paragraph we introdue the multipliative deomposition of the deformation gra-dient F into an isohori (or distortional) and a volumetri (or dilational) part 20 21 22,to derive the stress tensors for a weakly ompressible material.The multipliative deomposition of the deformation gradient F reads
F = F̂F, (24)where F = J− 1

3F is the isohori part, F̂ = J
1

3 I is the volumetri part, and I the identitytensor. The isohori part of the deformation gradient takes into aount the deformationwithout hange in volume, so that detF = 1. The volumetri part ontains all thevolumetri deformation ontributions, and det F̂ = J .In the same way, we an obtain the multipliative deomposition of the right Cauhy-Green tensor:
C = F

T
F = (F̂F)T

F̂F = (F)T (F̂)T
F̂F = J

2

3 (F)T
F, (25)and de�ne the unimodular right Cauhy-Green tensors as the isohori part of C:

C = F
T
F = J−

2

3 C, with detC = 1. (26)In partiular, together with the invariants of C we introdue the invariants of C as
IC = trC, IIC =

1

2
((C)2

− (trC2)), IIIC = detC = J2, (27)
IC = trC, IIC =

1

2
((trC)2

− tr(C
2
)), IIIC = 1. (28)The use of (24), allows to split the strain energy funtion for an isotropi frame indif-ferent material 21 as

W (J, IC , IIC) = Wvol(J) + Wiso(IC , IIC), (29)where:
Wvol is a stritly onvex funtion and depends merely on the volume hanging partthroughout J ;
Wiso is purely isohori and depends on the invariants of the unimodular rightCauhy-Green C.In the balane of linear momentum we employ the �rst Piola-Kirhho� stress tensor

P, hene in the following all the alulation are made in terms of P. If we need to reover7



M. de Luathe symmetri Cauhy stress tensor σ or the seond Piola-Kirhho� stress tensor S wemay use the relations:
S = F

−1
P, and σ = J−1

F
T
P. (30)The introdution of the deomposition (29) allows us to derive the �rst Piola-Kirhho�stress tensor for eah mehanism as

P = 2F
dW

dC
= 2F

(dWvol

dC
+

dWiso

dC

)

, (31)and the volumetri and isohori parts of the stress tensor read
Pvol = JW ′

volF
−T , (32)

Piso = 2J−2/3
FP :

(∂Wiso

∂IC

I +
∂Wiso

∂IIC

(ICI −C)
)

, (33)where P = I −
1
3
C

−1 ⊗ C, I is a fourth order identity tensor, and ⊗ denotes the outertensor produt.Finally, we introdue the fourth order elastiity tensors, obtained by:
Cvol =

Pvol

∂F
, and Ciso =

Piso

∂F
. (34)3.1 Collagen ReruitmentThe ollagen reruitment and the elastin breakage are introdued on the basis of aninvariant salar funtion s that measures the deformation 13:

s(C1) = ŝ(C1(X1, t),x). (35)If the measure is homogeneous, there is no diret dependene on the position x. Duringthe motion, the ollagen reruitment ours at a threshold value s = sa, and at theorresponding material point, all the ollagen �bers are reruited simultaneously. If thedeformation is not uniform, the ativation riterion an be satis�ed at di�erent times indi�erent points of the body; moreover for an inhomogeneous body, sa will be funtion ofthe material position too.For isotropi materials, we may express s as:
s(C1) =

1

Cs
W1iso(IC1

, IIC1
), (36)where Cs is a onvenient oe�ient with dimension of Pa−1.Finally, by means of the total strain energy funtion (23), we an express the ontri-bution of both mehanisms in the referene on�guration Ω1 as

Wtot =

{

W1 for 0 ≤ s ≤ sa,

W1 + J1(t2)W2 for s ≥ sa.
(37)8



M. de LuaThe use of equation (29) for a multi-mehanism model leads to split further the en-ergy into W1vol and W2vol, representing the hange in volume of the body during themotion, while W1iso and W2iso represent the inompressible ontributions of eah meha-nism. Hene the (37) beomes
Wtot =

{

W1vol + W1iso for 0 ≤ s ≤ sa,

W1vol + W1iso + J1(t2)(W2vol + W2iso) for s ≥ sa.
(38)To write the balane of linear momentum in the referene on�guration Ω1 we need toderive the �rst Piola-Kirhho� stress tensor of a multi-mehanism. In the following weexpliitly indiate the dependene on di�erent time frames when needed for larity:

P1(t) = P(t)1vol + P(t)1 iso, and P2(t
′) = P(t′)2 vol + P(t′)2 iso, (39)that, by means of (32) and (33), may be rewritten as:

P(t)1 vol = J1(t)
dW1 voldJ1(t)

F
−T
1 (t), (40)

P(t)1 iso = 2J1(t)
−2/3

F1(t)P1 :
(dW1 isodC1

)

, (41)and
P(t′)2 vol = J2(t

′)
dW2voldJ2(t′)

F
−T
2 (t′), (42)

P(t′)2 iso = 2J2(t
′)−2/3

F2(t
′)P2 :

(dW2 isodC2

)

. (43)To simplify the notation, let us de�ne
F1(X1, t2) = F

∗ and J1(t2) = J∗. (44)hene from (7) and (9), we have
F2(t

′) = F1(t)(F
∗)−1 and J2(t

′) = J1(t) (J∗)−1. (45)The replaement of (45) in (42) and (43) allows us to pull bak the �rst Piola-Kirhho�of the seond mehanism P2 to the referene on�guration Ω1.When P(t)2 vol and P(t)2 iso are expressed with respet to the �rst referene on�g-uration Ω1, we may neglet in notation their dependene over time, and the total �rstPiola-Kirhho� stress tensor for a multi-mehanism model reads
P =

{

P1 vol + P1 iso for 0 ≤ s < sa,

P1 vol + P1 iso + J∗(P2 vol + P2 iso) for s > sa.
(46)9



M. de LuaThe stress tensors P1 and P2 are strongly non-linear, hene to linearize and solve thebalane of linear momentum, we need to ompute the fourth order elastiity tensors. Bymeans of (34) we �nd
C1 =

∂P1

∂F1

, and C2 =
∂P2

∂F1

, (47)where both C1 and C2 are obtained deriving P1 and P2 with respet to F1, beause bothstress tensors refer to the �rst referene on�guration Ω1.We observe that in Finite Element Method proedure, the needed quantity is not C1or C2, but their saturation with an inrement δF1 of F1; i.e. the linearization of the stresstensors in the diretion of an inrement δF1:
C1 : δF1 =

∂P1

∂F1
: δF1, and C2 : δF1 =

∂P2

∂F1
: δF1. (48)3.2 Elastin DegradationThe �rst mehanism is assoiated with the elastin omponent of arterial wall. Aspointed out in setion 1, early stage aneurysm formation is hypothesized to be relatedto a mehanial damage of elastin. Hene, we introdue, in the multi-mehanism modela ontinuous isotropi damage model for the �rst mehanism, following the model ofRobertson and oworkers15.We de�ne an internal damage variable D ∈ [0, 1] and following the approah desribedin 23 we postulate that the deoupled representation of the �rst mehanism strain energyfuntion (see equation (29)) still holds for the free energy :

W D
1 (J, IC1

, IIC1
, D) = W1vol(J) + (1 − D)W1iso(IC1

, IIC1
), (49)where W1vol(J) is the same funtion de�ned in setion 3 whih desribes the volumet-ri elasti response, and W1iso(IC1

, IIC1
) is the isohori e�etive strain energy of theundamaged material, whih desribes the isohori elasti response. We observe that de-formations due to temperature hanges are negleted. As suggested in 24, the damagephenomenon a�ets only isohori deformations. We all P

D
1 the �rst Piola-Kirhho�stress tensor of the damage model.From relation (49), the volumetri part of P

D
1 is

P
D
1vol = P1vol, (50)and from the Clausius-Plank inequality, it follows that 23:

P
D
1iso = (1 − D)P1iso, (51)

−
∂W D

1

∂D
Ḋ = W1isoḊ ≥ 0. (52)Inequality (52) speify that damage is a dissipative and irreversible phenomenon. More-over W1iso is the thermodynami onjugate variable of Ḋ, and the evolution of D may bedesribed in terms of W1iso. 10



M. de LuaLet us onsider again the salar funtion of deformation s(C1(t)) de�ned in (36), andonsider a threshold sb below whih no damage ours. We suppose that sb > sa, where sais de�ned in setion 3.1 and represents the salar measure of deformation at whih ollagenis reruited. While the body deforms, as long as s(C1(t)) < sb, elastin damage neverours and after the unloading stage the body reovers its initial stress-free on�guration
Ω1. One the deformation threshold s = sb is reahed, an irreversible damage to elastinomponent prevents the body, in the unloading stage, to reover the initial on�guration
Ω1 and it will reah another stress-free on�guration.To take into aount the gradual irreversible damage of elastin material, we de�ne

smax(C1(t)) = max
0≤τ≤t

s(C1(τ)), (53)as the maximum of our measure s(C1(t)) during the history of deformation. At eah timestep, i.e. at eah value of deformation, the quantity
φ(C1(t)) = smax(C1(t)) − s(C1(t)) = 0 (54)represents a surfae in strain spae. The normal to this surfae is Niso = ∂φ

∂C1

; when
Niso : δC1 > 0 the strain is inreasing (loading stage), otherwise when Niso : δC1 < 0 thestrain is dereasing (unloading stage).The analyti expression of damage variable D in terms of smax is:

D(smax) =
1

2
tanh

sf − smax(C1(t))

sf − se

+
1

2
, (55)where sf and se are two salar parameters, and D depends on C1(t) through smax(C1(t)).We observe that when max = sf , D(sf) = 0.5, i.e. the elastin at the orrespondent pointis half-degraded, and se ontains the information about the speed of the damage proess.At eah time t, the evolution of the damage is regulated by

Ḋ =











∂D

∂smax
˙smax if φ = 0 and Niso : δC1 > 0,

0 otherwise.

(56)Finally, we may represent the �rst Piola-Kirhho� stress tensor P of the full multi-mehanism model with damage as:
P =







P1 vol + P1 iso for 0 ≤ s < sa,

P1 vol + P1 iso + J∗(P2 vol + P2 iso) for sa < s < sb,

P1 vol + (1 − D)P1 iso + J∗(P2 vol + P2 iso) for s ≥ sb.

(57)As P1 vol and P2 vol have the role of penalizing the material ompression, they do nothave a spei� onstitutive meaning for the multi-mehanism model. Hene, to simplifythe equation, we onsider only one volumetri ontribution:
Pvol = P1 vol, (58)11



M. de Luaand rewrite equation (57) as
P = Pvol +







P1 iso for 0 ≤ s < sa,

P1 iso + J∗
P2 iso for sa < s < sb,

(1 − D)P1 iso + J∗(P2 iso) for s ≥ sb.

(59)From (47), the fourth order isohori elastiity tensor is:
C

D
1 iso =

∂ ((1 − D)P1 iso)

∂F1
, (60)and the linearization of the �rst Piola-Kirhho� stress tensor for a �rst mehanismwith damage is

C
D
1 iso : δF1 = −D C1 iso : δF1 +

∂D

∂s
(P1 iso ⊗ P1 iso) : δF1, (61)where C1 iso =

∂P1 iso

∂F1

.3.3 Material ParametersThe analyti expressions of the strain energy funtions employed are:
Wvol =

K

4
((J1 − 1)2 + (lnJ1)

2), (62)
WNH

1 iso =
µ1

2
(IC1

− 3), (63)
W

Exp
j iso =

αj

2γj
(e

γj (I
Cj

−3)
− 1), with j = 1, 2. (64)The strain energy funtions adopted herein is the sum of the volumetri ontribution (62)21 plus an isohori ontribution. As suggested in the literature13, for the �rst mehanismthe hoies are both (63) and (64), while only the exponentian strain energy funtion (64)is suitable for the seond mehanism.The material parameters used for the double-mehanism are taken from the literature14and are listed in table 1. Neo-Hook Exponential

1st Meh. µ1 = 27.68 105 Pa α1 = 7.12 KPa, γ1 = 0.86
2nd Meh. - α2 = 31.28 KPa, γ2 = 1.87Table 1: Table of material parameters used in strain energy funtions (62, 63, 64).The volumetri oe�ient K (bulk modulus) of the strain energy funtion (see expres-sion (62)) annot be measured by experiments. It multiplies the volumetri part of the12
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(a) Example of the tension test ar-ried on a ylinder with the isohoriNeo-Hookean onstitutive law for asingle-mehanism. The olor salerepresents the displaement in theaxis diretion (x). Srolling is al-lowed on the lower base of the ylin-der.
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(b) Comparison between the stress-strain graph for a tension test with asingle and a double mehanism law.The blue line is the behavior of adouble Neo-Hook and Exponentialmodel, and the red dashed line ina single Neo-Hookean model. Thetwo urves are overlapped until thedeformation threshold ativates theexponential ollagen mehanism.Figure 2: Tension test in ase of uniform deformations.strain energy funtion, giving rise to a penalization term, that allows the material onlyslight ompression. In Le Talle 25, we �nd the suggestion that it should be in the range:
Cs 102

≤ K ≤ Cs 106, (65)where Cs is the harateristi shear modulus of the material. For smaller values of Kthere is loss of auray in omputing the solution and for larger values the onditionnumber of the assoiated disrete linear system beomes too large.In this work we use for the bulk modulus the value K = 107 Pa, that is inluded inrange (65) when Cs = µ1 or Cs = α1.4 NUMERICAL RESULTS AND DISCUSSIONSome simple numerial tests have been used to explain the behavior of the ollagenreruitment mehanism within the double mehanism model in the ase of uniform defor-mations and non-uniform deformations. The tests are performed as a series of quasi-statideformations.We onsider a ylinder, the upper surfae is posed in tration, linearly varying withtime, the lateral surfae is stress free, and the homogeneous Dirihlet boundary onditionsare imposed at the omponent of displaement along the ylinder axis x on the lowersurfae. The initial length of the ylinder is 1 m and its radius 0.5 m. A piture of thedeformed ylinder is shown in �gure 2(a). 13
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(a) Example of a tension test ar-ried on the ylinder with the iso-hori Neo-Hook onstitutive law fora single-mehanism. The olor salerepresents the displaement in theaxis diretion (x). The lower baseof the ylinder is now loked.
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(b) Comparison between the stress-strain graph for a tension test with asingle and a double mehanism law.The blue line is the behavior of adouble Neo-Hook and Exponentialmodel, and the red dashed line in asingle Neo-Hookean model. The twourves smoothly separates beausethe ollagen reruitment is gradualthroughout the ylinder.Figure 3: Tension test in ase of non-uniform deformations.In this test, the deformation is uniform, i.e. it is the same in eah point. Therefore,the deformation threshold sa = 0.5 is reahed ontemporaneously by all elements of theomputational domain. In �gure 2(b) is shown a omparison of the stress-strain urveobtained with a double-mehanism and a single-mehanism model. The deformation λ1is omputed as the urrent length over the initial length of the ylinder and the stress
P11 is the prinipal �rst Piola-Kirhho� stress omponent in the axial diretion x. Thedouble-mehanism, omposed by a Neo-Hookean material for the �rst mehanism and anExponential material for the seond, is ompared with a single Neo-Hookean material. Itan be observed, in �gure 2(b), that the two urves overlap until the threshold value isreahed (whih orresponds to s = sa). Above suh value, they are di�erent. As a matterof fat at s = sa the seond mehanism beomes ative in all the points of the ylinder.To test the behavior of the double-mehanism model in ase of non-uniform deforma-tion, we modify the previous tension test imposing a Dirihlet homogeneous boundaryondition on all the omponents of displaement at the lower base of the ylinder (see�gure 3(a)).In this ase, the deformation is not the same in all the points of the ylinder. As thedeformation is not uniform, at eah time only some elements are ativated. In �gure3(b) we plot P11, the �rst Piola-Kirhho� stress omponent in the axial diretion x,versus the deformation λ1, omputed as in the previous test. The blue urve represents14
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(a) 150th frame (b) 160thframe () 170th frame
(d) 180thframe (e) 190th frame (f) 200thframeFigure 4: The piture shows the highlighting of ativated elements at di�erent time, i.e. atdi�erent values of tration, and the orrespondent graph of salar measure of de-formation s = 1

µ1
W

NH
1 iso, along the axis x, with respet to the ativation threshold

sa = 0.5. The ativated elements are plotted on the initial geometry.a double-mehanism made of a Neo-Hookean and and Exponential material, and the reddashed urve is a single Neo-Hookean mehanism. In this ase, we observe that beforethe ollagen reruitment, the two urves are overlapped, but the split-up is very smooth,due to the fat that the seond mehanism beomes ative smoothly within the elementsof the omputational domain.We notie that for large enough tration, the deformation overomes the threshold,starting from the elements of the upper surfae and then in rest of the ylinder. Corre-spondingly, in �gures 4, the ativation of the elements belonging to the upper surfae ofthe ylinder ours earlier than the ativation of the elements below them. In �gures 4,ativated elements at di�erent time frame, i.e. at di�erent values of tration, are high-lighted on the initial geometry. Eah piture is joined by the orresponding graph of thesalar measure of deformation s = 1
µ1

W NH
1 iso, along the ylinder axis x, with respet of theativation threshold sa = 0.5.To show the behavior of the full multi-mehanism damage model, we onsider an in�a-tion test arried on a straight tube, representing a portion of an artery, where the innerradius is dereasing along the axis. This geometrial feature may represent an initial nonhealthy situation of the artery. The in�ation test has been performed as a series of quasistati in�ation, inreasing the internal pressure linearly with time. The length of thetube is 3 m, the minimum and maximum inner radius are 0.3 and 0.1 m, and the outerradius is 0.5 m. The parameters used are sa = 0.5, for ollagen ativation, se = 1.15,15
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Figure 5: Piture of ativated ollagen elements (left) and damaged elastin elements (right) foran in�ation test of a straight tube with narrowing radius. The �nal in�ation pressureis 31 KPa.and sf = 1.1 for the elastin damage model.The in�ation of the ylinder indues a non-uniform deformation within the tube. Inpartiular, the deformation is maximum at the inner of the ylinder and radially dereases.We observe that where the arterial wall is thiker the deformation is smaller, and the sub-sequent ativation of ollagen involves only few elements lose to the lumen, while wherethe wall is thinner, the deformation is wider and all the ollage elements are ativated, seethe red elements in left �gure 5. Right �gure 5 shows the elements in whih the elastinis damaged. As for the ollagen, we observe that where the arterial wall is thinner, thedeformation is bigger and the damage of elastin elements happens before than in the restof the tube.In partiular, where the elastin is damaged, the wall beomes even weaker and thedeformations larger. In �gure 6 we show the omparison between the referene geometryand the deformed geometry. In partiular the deformation of the portion of the tubewhere the elastin is damaged may be very similar to the initial stage of an aneurysmformation.5 CONCLUSION AND DISCUSSIONIn this paper we present the implementation and numerial results obtained with amulti-mehanism model suitable to simulate the non-linear and omplex behavior of ere-bral arteries. The theoretial model was �rst presented by Robertson and oworkers 14 1513. The big hallenge of this model is the need of two referene on�gurations for elastinand ollagen. Our ontribution to the multi-mehanism model is the derivation of theLagrangian formulation of the whole onstitutive model in the �rst (elastin) refereneon�guration. Hene, it has been neessary to map the stress tensor of the ollagen16
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Figure 6: Comparison between the referene geometry and the deformed geometry for an in-�ation test of a straight tube with narrowing radius.mehanism to the elastin referene on�guration. The resulting non standard formulationrequired a partiular attention in the ode implementation. The �nal non-linear systemhas been solved by means of Newton-Raphson method with exat jaobian omputation28. The multi-mehanism model presented in this paper has been implemented in non-ommerial Finite Element library LifeV 29.The numerial results obtained with our solver show that the multi mehanism model isable to apture the non-linear harateristis of arterial wall. At low level of deformationthe elastin (�rst mehanism) supplies weak resistane to the tension test, while when theollagen enters the model, it renders the whole material sti�er. We showed that the waythe ollagen is reruited depends on a very general way by the deformation �eld.Finally a more realisti in�ation test has been shown. In this numerial simulation,we observe that the ollagen reruitment and elastin deativation start from the lumen ofthe arteries, where the deformation is wider. In partiular, the narrowing of the internalradius of the ylinder, may be interpreted as an initial unhealthy situation, that leadsto an non-uniform damage of the elastin mehanism and lead to an enlargement of thearterial segment. From a qualitative point of view the enlargement represents the initialstage of aneurysm formation, due to mehanial damage of elastin omponents of arterialwall.Aknowledgements: This work has been arried out in ollaboration with Davide Am-brosi, Modeling and Sienti� Computing (MOX), Dipartimento di Matematia, Polite-nio di Milano; Anne M. Robertson, Department of Mehanial Engineering and Mate-rial Siene (MEMS), University of Pittsburgh and Alessandro Veneziani, Department ofMathematis and Computer Siene, Emory University.This work has been supported by the ERC Advaned Grant N.227058 MATHCARD,17
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