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Abstract. A multicomponent Lattice Boltzmann scheme is employed to study the perfor-
mance of a T-shaped micromixer with obstacles in its main channel. This solution was
proposed in order to speed-up the mixing process which suffers because of the low-Reynolds
flow regime. The two dimensional simulations conducted in this study with different flow
rates and obstacle layouts demonstate the improvement of the efficiency of the mixer in-
duced by this solution. Besides, the results show a very good agreement with a previous
study in which a commercial code was adopted and provide guidelines to conveniently place
the obstacles.
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1 INTRODUCTION

The mixing of two fluids is an essential process in many microfluidic devices employed
in biomedical and biochemical processes like DNA purification, polymerase chain reaction
(PCR), protein folding and enzyme reaction. The performance of these processes relies
on rapid (order of milliseconds) and effective mixing of samples and reagen flowing in
microchannels. The design of such a device has to take into account the limitations
induced by the particular flow regimes occurring at microscales. Since typically Re < 1,
microflows are laminar. Neglecting the unsteady terms, the Navier-Stokes (NS) equation
reduces therefore to a balance between the pressure and the viscous term:

∂xp = ν∂yyu. (1)

Turbulence cannot be used to promote mixing, which instead relies on intermolecular
diffusion and convection, both characterized by a specific time scale. If l is the length
characterizing the mixing process, Ū the mean speed in the microchannel and D12 the
mutual diffusion coefficient of the couple of fluids considered, the time scales for diffusive
and convective mixing tD and tC , are respectively:10,11

tD =
l2

2D12

(2a)

tC ≈
l

Ū
. (2b)

The ratio between tC and tD is expressed by the Peclet number Pe:

Pe =
lŪ

D12

. (3)

Finally, the channel length Lm is given by:

Lm = Ū × tD = Pe× l (4)

The evaluation of these quantities for real problems shows the difficulties in the design
of a micromixer: diffusion in fact is a quite slow process, and the time for complete
mixing in the order of milliseconds can be achieved only if l amounts to a few microns;
if l > 10µm diffusion is not efficient, because Lm would get unacceptable requiring too
high pressure gradients necessary to drive the flow, with consequent problems in the
design of the micropump which is present in the lab-on-a-chip device. In other words,
l ≥ 100µm and Pe > 100 define a field of operative conditions that necessitates some
form of speed up of the mixing process that does not involve a great increase of pressure
drop. Micromixers are commonly classified as active or passive. Active mixing is based
on the supply of external energy, while in passive mixing the flow energy due to pumping
or hydrodynamic potential is used to restructure the flow in a way which results in faster
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mixing. The interested reader can find a complete review of the many different solutions
proposed in the last years.12 In this study the focus will be on passive micromixers and
precisely on the simplest type: the T-shaped micromixer. This device simply consists of
two inlet channels leading two fluid streams into a main microchannel where they flow
parallel. A varition is the Y-shaped micromixer, in which the inlets are inclined. In order
to increase the mixing efficiency of such a device, in1 it was proposed to place obstacles
in the main channel of a Y-micromixer. Obstacles do not generate turbulence in the
low Re flow regime characterizing the flow, but their effect is to stir the fluid creating
transversal mass transport. The obstacles can be easily realized by excimer laser or silicon
machining. In1 the effect of eight different obstacle layouts on the mixing efficiency of
an Y-sensor was determined by two-dimensional numerical simulations employing the
commercial code MemCFD by CoventorWave ™. This approximation is acceptable when,
say W and H respectively the width and the height of the main channel cross section,
W � H.

In this study the Lattice Boltzmann (LB) method2 is adopted to evaluate the efficiency
of a T-mixer under different flow conditions. The LB derives from a convenient discretiza-
tion of the Boltzmann equation. The algorithm is simple and suitable for massively paral-
lel computations; incompressible NS equations are recovered with second-order accuracy.
The LB is specially suited for multiphase flows in complex geometries, because it does
not require special treatment to preserve interfaces and it allows a simple incorporation
of curved shapes.

The rest of this paper is organized as follows: the standard LB formulation for single
phase flows is introduced in the next section. Then a multiphase/multicomponent LB
scheme, the Shan-Chen (SC) model is presented. This SC-LB is then validated against
the results reported by Wang1 , where circular obstacles were employed. Then the mixer
performance in presence of rectangular obstacles is evaluated by different tests. Conclu-
sions and directions for future work conclude the paper.

2 THE LATTICE BOLTZMANN METHOD

The LB method is derived from the general Boltzmann equation, which describes the
evolution of the single-particle distribution function f(x, ξ, t) in time because of particle
streaming and collisions. This distribution function expresses the probability of finding at
time t in position x a particle having a microscopic velocity ξ. By discretizing the space
x into a lattice L and the velocity space ξ into a finite set of b velocities on each lattice
site, the evolution of a discrete set of particle distribution functions, fi (x, t), associated
with each lattice velocity ei in a time step ∆t is expressed by the LB equation:

fi (x + ei∆t, t+ ∆t)− fi (x, t) = −1

τ
(fi (x, t)− f eqi (x, t)) i = 1 . . . b. (5)

In (5), ∆x = |ei|∆t is the distance between two consecutive lattice sites. The stream-
ing operator on the left hand side of equation (5) is a “shift” operation while the collision
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operator is completely local. These features make the LB particularly suitable for mas-
sively parallel computations. The collision expresses the relaxation of the fi distribution
function to the local equilibrium value. The collision matrix is diagonal, with all the
elements equal to the nondimensional collision frequency 1/τ . Since the relaxation time
τ is identical for all the distribution functions, equation (5) defines the so-called single-
relaxation-time LB (SRT-LB). In what follows greek indexes stay for space components,
while latin ones stay for lattice directions or fluid species. The equilibrium function f eqi
depends on the local macroscopic density and speed; its most general form is given by:

f eqi = Ai +Bieiαuα + Ciu
2 +Dieiαeiβuαuβ +O(u3). (6)

The constants Ai, Bi, Ci and Di appearing in equation (6) are determined in order
to recover the correct macroscopic fluid dynamics at inviscid level, that means the Euler
equations. The constraints that the f eqi has to fulfill are:

ρ =
∑
i

f eqi (7a)

ρuα =
∑
i

f eqi eiα (7b)

Π
(0)
αβ =

∑
i

f eqi eiαeiβ = pδαβ + ρuαuβ. (7c)

Equations (7a)-(7c) state that macroscopic quantities like density, momentum and
energy are obtained as discrete moments of the equilibrium distribution function, while,
as predicted by kinetic theory, the viscous part of the stress tensor comes from the non-
equilibrium part of the fi:

Π
(1)
αβ =

∑
i

fneqi eiαeiβ =
∑
i

(fi − f eqi )eiαeiβ. (8)

The final form of the equilibrium distribution is the following3 :

f eqi (ρ,u) = ρwi

(
1 +

1

c2
s

eiαuα +
1

2c4
s

ēiαēiβuαuβ

)
. (9)

where cs =
√
RT is termed the lattice speed of sound and is a constant depending on

the lattice model, and the coefficients wi are weighting factors that allow to build fourth-
order isotropic tensors as those characterizing the NS equations even on irregular lattice
models. The tensors Qiαβ = ēiαēiβ are the traceless part of eiαeiβ and are therefore defined
as Qiαβ = eiαeiβ − c2

sδαβ. Two of the most commonly used lattices for two-dimensional
and three-dimensional simulations, respectively, are shown in figure 1, together with the
components of the vectors which define them and the different wi.
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(a) (b)

Figure 1: Different lattice models for two- and three-dimensional simulations: the zero speed vector is
indicated by a circle, while the slow and fast speed vectors are respectively represented by black and blue
arrows. a) D2Q9; b) D3Q19

eD2Q9
i =


(0, 0), wi = 4/9, i = 0,

(±1, 0), (0,±1), wi = 1/9, i = 1 . . . 4

(±1,±1), wi = 1/36, i = 5 . . . 8

(10)

eD3Q19
i =


(0, 0, 0), wi = 1/3, i = 0,

(±1, 0, 0), (0,±1, 0), (0, 0,±1), wi = 1/18, i = 1 . . . 6

(±1,±1, 0), (0,±1,±1), (±1, 0,±1), wi = 1/36, i = 7 . . . 18

(11)

The NS equations are recovered by means of a multi-scale expansion6 . The incom-
pressible NS are obtained with a O(Ma3) term, therefore the LB is said to be a weakly
compressible method. Thermodynamic pressure and kinematic viscosity are respectively
written as:

p = c2
sρ. (12)

and

ν =
2τ − 1

6

∆x2

∆t
=

(
τ − 1

2

)
c2
s∆t (13)

Pressure is therefore obtained by a state equation, rather than by solving an elliptic
equation, while equation (13) prescribes that τ > 0.5.
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2.1 Multicomponent LB formulation: the Shan-Chen model

In a multicomponent flow different sets of f ji and f j,eqi have to be defined for each
species j, as well as different SRT “stream and collide” equations like (5):

f ji (x + ei∆t, t+ ∆t)− f ji (x, t) = − 1

τ j
(
f ji (x, t)− f j,eqi (x, t)

)
. (14)

In equation (14) τ j represents the relaxation time characterizing the j-th species. In
the previous section it has been shown that the standard LB formulation simulates incom-
pressible NS with an ideal equation of state (12). In order to study multiphase/multicomponent
flows nonideal effects have to be considered. The Shan-Chen4,5 model consists in intro-
ducing a body force that mimics the interparticle interactions in order to achieve phase
separation as well as non-ideal equation of state. This force is derived as gradient of a
scalar potential ψ, which depends on density and it is referred to as effective mass. For a
multicomponent flow this force takes the following expression:

Fj
α(x) = −c2

sψ
j(x)

∑
i

∑
j̄

w(|c|2i )Gjj̄ψj̄(x + ci)ciα, (15)

where Gjj̄ is referred to as the coupling matrix. It is important to underline that
Gjj̄ = Gj̄j. The interaction strength between species j and j̄ is controlled by Gjj̄, which
has to be positive in order to enforce separation between them. Besides, surface tension
σ and diffusivity D12 are controlled by G. A common choice of the effective mass for
multicomponent flows is9 ψj = ρj. Concerning the numerical evaluation of the gradient
appearing in (14) many different finite difference schemes are possible in principle.7 Gen-
erally speaking one has to choose a certain number N of lattice nodes yi|{i = 1 . . . N}
surrounding x; say ci = x − yi|{i = 1 . . . N}, the next step is to define a set of coeffi-
cients w(|c2

i |) weighting the contributions of the different nodes, bearing in mind some
constraints:

• To preserve isotropy the sites must be symmetrical about all the axis.

• Closer sites must have a bigger influence than far ones.

• The weighting factors w(|c2
i |) must be chosen so to build at least 4-th order isotropic

lattice tensors.

For each species it is possible to evaluate the momentum change produced by the
corresponding force computed by equation (11) as:

uj,eq = u′ +
τ j

ρ
F, (16)

where u′ represents an average speed :
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u′ =

∑
j
mj

τj

∑
i f

j
i ei∑

j
mj

τj

∑
i f

j
i

. (17)

The total density at any lattice site is intuitively computed adding the densities of the
single species. The macroscopic momentum is computed by making the average between
the pre- and post-collisional states:

ρuα =
∑
i

f ji eiα +
1

2

∑
j

F j
α, (18)

Finally, the kinematic viscosity and the non-ideal equation of state associated with the
SC model with multiple components are given by:

ν = c2
s

∑
j

χj
(
τ j − 1

2

)
, (19a)

p =
1

3
ρ+

3

2

∑
j,j̄

Gjj̄ψ
jψj̄ (19b)

In equation (19a) χj = ρj
/∑

j ρ
j represents the local value of the mass fraction for

j-th species.

2.2 Static liquid droplet

The first case considered concerns a single static liquid droplet surrounded by another
liquid. The grid is 51×51×51 and periodic boundaries are employed. D3Q19 model is
adopted. The droplet has initial radius Ri = 12 and is placed at the centre of the domain.
The initial densities inside and outside the droplet are respectively ρ1 = 1.1 and ρ2 = 1.0,
while the coupling matrix is given by Gij = 1.0 for i 6= j and Gij = 0.0 for i = j and the
relaxation times are both 1. The initial and final droplet configurations in the symmetry
plane can be appreciated in figure 2a and 2b, where the concentration of component 1 is
visualized. The density profile is plotted in figure 2c. The velocity field should ideally be
zero everywhere; figure 2d shows instead not-negligible velocities in the interfacial region,
which are referred to as spurious currents. This velocity field, which is produced because
of the discretization of the gradient in equation (15), increase with the density ratio till
they cause the simulation to blow up: their reduction is therefore crucial in order to
achieve high density ratios. The maximum values of spurious currents module will be
indicated here and in what follows as |u|s. In this particular case a value of |u|s = 0.081
was measured. Further tests conducted at G12 = 0.1, G12 = 0.21 and G12 = 0.71 resulted
in |u|s respectively equal to 0.0063, 0.01 and 0.06.

Evaluating the pressure values far from the interface and the corresponding density
gradients, it is possible to determine the surface tension from Laplace’s law pin−pout = σ

2Rf
.

7



Ernesto Monaco, Kai H. Luo and Gunther Brenner

Different initial radii have been tested (10, 12, 14, 16, 18), and the pressure jump has been
computed, together with the final radius, for every test. As it is possible to see in figure 2d
the computed points fit a straight line quite well, therefore the Laplace’s law is correctly
approximated.

Figure 2: Static droplet case: a) Initial condition; b) Final condition; c) Density profile; d) Spurious
currents; d) Verification of Laplace law. The first four pictures are related to the symmetry plane (z=25).

3 The T-shaped Micromixer

In1 the Y-shaped micromixer was tested under different obstacle layouts. The fluids
considered in1 were water and ethanol at Pe = 200. Table 1 reports the main properties
of these two substances. For each configuration, the mixing efficiency εmix was evaluated
as in:14

εmix =

(
1−

∫ 2l

0
|χ− χ∞|dy∫ 2l

0
|χ0 − χ∞|dy

)
× 100%, (19c)
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where χ is the mass concentration distribution at the outflow section, χ∞ is the concen-
tration corresponding to a complete mixing and χ0 is the initial concentration distribution.

Fluid µ (kg µm−1s−1) D12 (µm2s−1) ρ (kg µm−3)

Water 9.0×10−10 1.2×103 9.998×10−16

Ethanol 1.2×10−9 1.2×103 7.89 ×10−16

Table 1: Properties of water and ethanol at 20◦ C.

Two-dimensional LB simulations were performed using the SC model for all the con-
figurations using D2Q9 model. To have all the boundaries perfectly aligned on the grid,
the T-shaped geometry was chosen: this choice was justified by what is reported in13 ,
where it was demonstrated that the inclination of the inlets has not a significant effect
on the mixing performance. The T-sensor is represented in figure 3, in which one of the
circular obstacle layouts fabricated and tested in1 is also reported.

Figure 3: T-sensor geometry with obstacle layouts. The photographic image from1 refers to part of one
of the obstacle layouts considered in the experiments.

Like in the previous case ψj = ρj. Once ψ and the coupling matrix elements are fixed,
the diffusivity is determined by measuring the decay of a concentration wave like what
was done in5,15 . The density and viscosity ratios match those of real fluids. In order
to get the desired Peclet number of 200, the coupling matrix for this case is given by
G11 = G22 = 0 and G12 = G21 = 1.1. The boundary conditions were Bounce-Back2 on all
obstacle surfaces and channel walls, Zou-He8 scheme for inlet sections and extrapolation
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scheme for the outflow section. In order to evaluate the gradient in equation (15) a “ghost”
layer of nodes is placed immediately outside the outflow section: i and j are the indexes
on x and y directions, the abscissas of a ghost node, outflow section node and inside node
at constant j will be indicated by i, io and io−1 respectively. The density on each node
io−1 is therefore extrapolated according to ρi = 4

3
ρo − 1

3
ρi−1.

Figure 4: Fluid 1 concentration contours at different U : (a) 0.1, (b) 0.11, (c) 0.5.

The first test intends to evaluate the dependence of the mixer efficiency on the flow
rate. No obstacles are considered here. figure 4 illustrates the effect of increasing fluid 1
(water) inflow speed U from 0.1 to 0.5 by showing fluid 1 (water) concentration contours.
Both fluids have the same flow rate, so the inlet velocity of fluid 2 (ethanol) is adjusted
accordingly. The concentration profiles for fluid 1 in the middle and at the outflow sections
of the main channel (indicated with a red and a black line in figure 4) can be seen in figure
5 a and b. Slow flows do not need any obstacle to exhibit a high degree of mixing.

3.1 CONFIGURATIONS WITH CIRCULAR OBSTACLES

The different obstacle layouts adopted in1 are listed in Table 2 and sketched in figure
6. Some configurations (indicated here and in the following as “C”) are included in others
with bigger number of obstacles, and therefore are represented in red. The channel is
1.2mm and 800 grid nodes long respectively in1 and in the present study. The resulting
lattice space ∆x is therefore 1.5µm, except for configuration 8, where the channel is 2.0mm
long and 1000 nodes where used, for a ∆x = 2µm. Table 3 compares the most relevant
geometrical quantities indicated in figures 3 and 6 between LB simulations and1 .
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(a) (b)

Figure 5: Concentration profiles for fluid 1 (water) at main channel mid- (a) and outflow sections (b).

Configuration number 1 2 3 4 5 6 7 8

Number of obstacles 0 1 1 2 3 9 9 18

Table 2: Different configurations tested in1 and in the present study.

In what follows the inlet velocity of water is fixed to 0.5. Figure s 7-11 illustrate
the performance of the different configurations. The obstacles brake the symmetry of
parabolic velocity profile (here with a small discontinuity because of the small viscosity
difference between the 2 fluids) giving diffusion more time to act. This is evident in figure
11 where the streamlines and velocity vectors are shown for configurations 4 and 8. The
efficiencies are listed in Table 4: it is important to notice that it is not sufficient simply
to place more obstacles to increase the mixing efficiency; the layout makes the difference.
That is evident when comparing configurations 2 and 3: they are both characterized by
one obstacle only, but the latter has it tangent to the middle of the channel. The better
configurations are those which possess consecutive obstacles, or group of obstacles that
induce migration in opposite directions. C8 proves to be the most efficient configuration,
because it forces the fluid to migrate laterally more than any other configuration tested.
Table 4 also reports the corresponding efficiencies computed in1 , evidencing a close agree-
ment with the performance of a commercial code. The only exception was configuration
C3, which was found to be less efficient than C2, while in1 it achieves twice the efficiency
of C2. This discrepancy is probably due to a different vertical position of the obstacle in
this study with respect to what is simulated in1 , as confirmed by the very close match
for the other seven configurations.
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Figure 6: Geometry of the different configurations tested.

L H W Win Lin Dobst L1 L2 L3 H1

Wang1(µm) 1200 (2000) 100 300 200 - 60 - 100 300 90
LU 800 (1000) - 150 100 300 40 (30) 100 50 150 45

Table 3: Micromixer geometrical parameters in1 expressed in µm and in the present study expressed in
lattice units; the values in parentheses are related to configuration 8.
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(a) C1 (b) C2

Figure 7: LB simulation of T-micromixer for configurations 1 and 2 as proposed in1 .

(a) C3 (b) C4

Figure 8: LB simulation of T-micromixer for configurations 3 and 4 as proposed in1 .
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(a) C5 (b) C6

Figure 9: LB simulation of T-micromixer for configurations 5 and 6 as proposed in1 .

Figure 10: LB simulation of T-micromixer for configurations 5 and 6 as proposed in1 .
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(a) C4 (b) C8

Figure 11: Particular of streamlines (a) and velocity vectors (b)for C4 and C8.

Configuration

Efficiency (%) 1 2 3 4 5 6 7 8

Wang1 18.0 21.0 42.0 44.0 46.0 32.0 53.0 62.0
LB 17.2 22.0 31.5 43.8 46.2 31.4 51.3 60.8

Table 4: Comparison between the mixing efficiency in1 and those computed in the present study with
LB for all the different configurations.

4 CONFIGURATIONS WITH RECTANGULAR OBSTACLES

Once demonstrated that the presence of obstacles stir the flow in the transverse direc-
tion promoting mixing it is possible to test the device with obstacles differently shaped.
In this section the parameters are the same of configurations 1-7, but there are only two
rectangular obstacles. Three tests were conducted, in order to evaluate the influence on
mixing of three different geometrical parameters, namely the degree of blockage, the off-
set and the gap between obstacles. These parameters are defined as in16 and have been
sketched in figure 12.
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Figure 12: Sketch of the different tests conducted with rectangular obstacles: a) Blockage; b) Offset; c)
Gap.

The degree of blockage is defined as Ly/W . Observing Figure 13 it is possible to notice
how increasing this parameter improves εmix till a certain amount, when the fraction of
distorted flow dropped.

Figure 13: Sketch of the different tests conducted with rectangular obstacles: a) Blockage; b) Offset; c)
Gap.

The offset measures the relative position of the obstacles respect to channel walls: it
is defined by LA/LB. As it appears clearly in Figure 12, when the obstacles touch the
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channel walls the offset is null, while when the obstacles are symmetrically placed with
respect to the centre of the channel this parameter is one.

Figure 14: Sketch of the different tests conducted with rectangular obstacles: a) Blockage; b) Offset; c)
Gap.

In the first case the efficiency reaches its maximum (serpentine channel), while εmix
decreases once the obstacles approach the centre of the channel. Figure 14 summarizes
these results. Finally the relative gap between obstacles was defined as LG/W . As can
be seen in figure 15 the performance improved as the gap was increased.

5 CONCLUSIONS

- Passive micromixers are the simplest devices to promote mixing in Lab-On-a-Chip
devices. Unfortunately diffusion is not an effective mean to achieve a high mixing degree
in short microchannel lengths.

- The introduction of obstacles can significantly improve the performance of a passive
mixer by inducing some lateral convective flow.

- The Lattice Boltzmann method was shown to provide results comparable with those
reported in1 using a commercial code.

- The results show that it is not necessary to place a great number of obstacles in the
main channel of the T-sensor. High mixing efficiencies can be in fact achieved by simply
placing few asymmetric obstacles in a “suitable” way.

- The tests conducted with rectangular obstacles provided guidelines for a “suitable”
placement: mixing efficiency is significantly lifted by increasing the obstacle gap and by
decreasing the offset.

- The results presented, together with the parallel nature of LB algorithm are en-
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Figure 15: Sketch of the different tests conducted with rectangular obstacles: a) Blockage; b) Offset; c)
Gap.

couraging for an analogous three-dimensional study, which in fact will be the subject of
future work.
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