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Abstract. The practice of three dimensional time accurate computational fluid dyna-
mics (CFD) methods and the use of computational structural mechanics solver (CSM)
are essential for the turbomachinery design process. New technologies like the blisk de-
sign for aeroengines or the increased requirements on flexible loading of stationary gas or
steam turbines for power generation makes a tight integration and coupling of both CFD
and CSM tools indispensable. Especially the effects of fluid-structure-interaction (FSI)
are an important field for investigations even in early stages of the modern design and
optimization process.

The DLR in-house CFD code trace1 is a time accurate Reynolds-averaged Navier-
Stokes-solver including a time linearized module developed for the efficient investigation of
FSI phenomena. The linear solver allows to reduce response times for flutter calculations
by up to two orders of magnitude compared to nonlinear time accurate calculations2. Com-
bined with the CSM solver CalculiX3 a process chain for aeroelastic design optimization
for turbomachinery is established. An essential ingredient of this process is the mapping
of surface displacements computed by the CSM solver onto the mesh of the CFD solver.
A mapping algorithm has been implemented which does not rely on topology information,
e.g. the position of the leading and trailing edge of a blade, but uses geometric data, i.e.
vertex coordinates and surface elements,only.

The focus of this article will be on the algorithms for a topology independent mapping
including the approximation of the structural model and the handling of complex mode
shapes. The application of this algorithm to a turbine vane and high pressure turbine blade
cluster is presented. The process for flutter investigations is shown for a high pressure
ratio single stage fan.
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1 INTRODUCTION

The motivation for the development of an aeroelastic pre-processor prep was to im-
plement an algorithm of industrial strength to provide the results of a CSM solver to the
CFD solver trace for aeroelastic applications.

prep transfers (maps) the surface displacements computed by a CSM solver on a
finite element grid to the respective boundaries of the CFD mesh. Special attention was
paid to an automatic process with the least possible user intervention needed in order
to enable automatic, script controlled workflow. Therefore strategies were employed to
ensure the mapping for arbitrary topologies. In the following the application to aeroelastic
calculations is presented where the mapped surface displacements are used to deform the
CFD mesh to investigate blades with respect to their flutter behavior.

The algorithm basically consists of three steps. The first is the automatic alignment of
the CSM and CFD geometries. The second is the mapping of the surface displacements
from the CSM data to the CFD boundaries. The third is the calculation of the mesh
deformation.

The following three sections describe this algorithm in detail followed by a section
showing results of the application to the 11th standard configuration4,5, to a welded low
pressure turbine blade cluster and a high pressure single stage fan.

2 ALIGNMENT OF THE GEOMETRIES

To align the CSM and CFD geometries is the first step in the presented algorithm.
For an industrial workflow it is mandatory that the alignment is performed fully auto-
matic without user knowledge of the given geometries. The only input to prep is the
specification of the CFD mesh surface regions onto which the CSM surface displacements
should be mapped. No further user interaction is required. Nevertheless there are some
possibilities to influence the matching process, for example to mirror the CSM geometry
about planes spanned by two arbitrary coordinate axes, to perform additional shifts and
rotations or to control the automatic alignment to test the best strategy for the current
process.

In essence the alignment is a coordinate transformation performed on the CSM data
to map it into the domain of the CFD geometry’s system. Each system is spanned by the
principle axes of the specified surface and the center of area as its origin. Let Ai and ri
be the area and the face center of the i-th element, respectively. Then the center of area
x0 can easily be obtained by calculating the area weighted average of the N element face
centers:

x0 =

∑N
i=1 Ai ri∑N
i=1 Ai

. (1)

The system’s axes are the eigenvectors of a system similar to the moment of inertia
tensor I:
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I =
N∑
i=1

Ai(‖ri‖2 Id− r⊗ r) . (2)

The simplification to just sum up the face areas and neglect the moments of inertia of
every single face is sufficient for even coarse CSM grids and much finer CFD meshes. This
approximation does not result in significant misalignment of the geometries.

The moment of inertia tensor is positive semi-definite and symmetric therefore the
cyclic Jacobi method6 to obtain the eigenvalues and eigenvectors is used. These eigen-
vectors are combined to the principal axes systems for CSM and CFD geometry. The
order of the eigenvectors in the principal axes system of the CSM grid are sorted in the
way that the order of the corresponding eigenvalues matches the ones of the CFD system,
i.e. the euclidean norm for the difference of the vectors of eigenvalues is minimized. This
way it can be assured that the CSM’s and the CFD’s axes system have the same orienta-
tion. If the systems show a different orientation, either right-hand or left-hand rule, the
principal axes system of the CSM geometry is reorientated by axis inversion. To define
the minimum rotation, caused by the subsequent transformation, different axis inversions
will be applied until the Frobenius norm of the transformation matrix is minimized. The
transformation matrix is the product of the principal axes systems I0 of the CSM and
CFD geometry:

T = I0,CFD I0,CSM . (3)

The transformation matrix is applied from the left to the CSM grid and displacement
vectors. For the coordinates this has to be done w.r.t. to the CSM geometry’s moment
of inertia reference frame:

xCFD
CSM = T (xCSM − x0) . (4)

In which xCFD
CSM are the CSM coordinates in the CFD’s frame of reference.

The described approach fails for mirror-inverted geometries or significantly different
CSM and CFD geometries. In this case user invention is required to supply additional
information to the mapping algorithm as mentioned in beginning of this section.

3 MAPPING OF THE DATA

With the two geometries congruent the mapping itself is rather easy. In application
the computation time of the mapping is negligible compared to the time consumption of
the subsequent mesh deformation described below. Therefore a simple nearest neighbor
search finding the CSM face nearest to a CFD mesh corner node is a valid and straight
forward method. The CSM surface element with its face center nearest to the examined
CFD mesh node is selected.
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If the face diameters are large compared to the thickness of the blade, it happens that
the nearest found element resides on the opposite side of the blade. To prevent this false
pairing surface normals are taken into account. In the nearest neighbor search only CSM
mesh elements are considered for which the face normal points into the same have space
as the normal direction defined for the CFD mesh node examined. This normal direction
is computed as the average of the normals of its adjacent faces.

Once the element nearest to the examined corner node is found an inverse distance weigh-
ting interpolation is performed. The sampling points are the corner nodes of the selected
CSM surface elements. The limit of this approach is again a very coarse CSM grid in
combination with a fine CFD mesh. In this cases a bilinear interpolation has to be per-
formed.

4 DEFORMATION OF THE MESH

Once the surface displacement vectors are mapped onto the specified wall boundaries
of the CFD mesh, a grid deformation is computed using an elliptic mesh deformation
algorithm. The algorithm is based on the linear elasticity theory 7 for an elastic solid
body subject to surface tractions prescribed by the surface displacement vectors. For the
application to grid deformation the Poisson ratio is set to zero and the Young’s modulus
E is chosen to be proportional to the inverse cell volume. This inhibits deformation of
small cells which are, however, displaced en bloc when adjacent cells change their form.
The deformation vector x̃ for each grid point is computed as the solution of the Poisson
equation system

∇ · (E(x)∇x̃) = f(x) (5)

for the real and imaginary parts of the three cartesian components of x̃. In absence of
body forces f is zero. An iterative method is used to solve this Poisson equation system for
the real and imaginary parts of the three cartesian components of x̃. In order to reduce
the CFD problem to one single passage, phase lag conditions are prescribed at periodic
boundaries for the complex mesh deformations, i.e.

x̃(θ + δθ) = eiσMδθ x̃(θ), (6)

where δθ and σ denote the pitch and the interblade phase angle, respectively. Here, Mδθ

is the rotation matrix for the rotation about the x-axis by δθ.
The surface displacement is usually prescribed by inhomogeneous Dirichlet conditions

for the three complex components. However, to avoid strong shearing of the tip clearance
cells, we replace the Dirichlet condition by a slip wall condition. It prescribes the normal
displacement but allows grid points to move tangentially to solid walls. Figure 1 shows
the tip clearance region with the blade in the undeformed state and at the maximal
deflections. Due to the slip wall condition no shearing of the near wall cells can be
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observed. Notice that the correct computation of the shear stresses at solid walls, and
thus the viscous fluxes of the flow solver, must not be based on the grid velocity as
computed from the grid deformation vectors but on the actual wall movement defined by
the surface displacements.

Figure 1: Original (yellow) and deformed tip clearence cells for maximal deflection (blue and green).

5 APPLICATIONS

5.1 STANDARD CONFIGURATION 11

The 11th standard configuration4,5 describes a turbine vane in an annular nonrotating
cascade. The test case shown here, the mapping of the third complex eigenmode and
the subsequent mesh deformation, is a good example to explain the obstacles sometimes
encountered in an industrial workflow.

X

Y

Z

Figure 2: Orientation of the CSM geometry (right) and the CFD surface mesh (left) before the alignment.

The coarse unstructured CSM grid is applied to a mirrored geometry, see figure 2,
that has a tip clearence while the CFD mesh has not. The difficulty is, that the described
alignment algorithm matches the geometries without recognizing the different radial blade
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Figure 3: Unstructured CSM grid and data (left) and the surface displacements mapped to the CFD
mesh (right).

length. As seen in figure 3 the mapping results in inaccuracies where the CFD solid wall
boundaries exceeds the length of the CSM blade model. This setup is often used for first
investigations of the aeroelastic stability of a design in iterative optimization. In spite of
this geometry inconsitency the results are of sufficient quality.

Figure 4 shows the original and deformed CFD mesh on a circumferential slice at radial
tip position of the CSM model blade. The vectors shown on the right are the solution of
the deformation module of prep.

5.2 LOW PRESSURE TURBINE VANE CLUSTER

The aeroelastic verification of welded turbine blades are an important field in tur-
bomachinery design. The stiff coupling of the blades in the cluster results in different
eigenmodes compared to single shrouded blades. Thus the CSM calculations have to be
performed with the complete cluster. To investigate the stability of a blade cluster in an
aeroelastic simulation these mode shapes should be mapped on a similar setup of blades
in the CFD domain, see figure 5. In this application the topology independence of the
presented approach is the key for the industrial applicability.There is no need to define
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Figure 4: Original CFD mesh (black) and real part of the deformed mesh (displacement scaled by factor
20, red) and the real part of the vectors prescribing this deformation.

leading or trailing edges or the ordering of surfaces and boundaries to lead the mapping.
This complex setup can be mapped as precisely and easy as a single blade.

For shrouded blades a mandatory step is to clean the CSM geometry from the shrouds
if these are not part of the CFD geometry. The algorithm has a sufficient tolerance
against fillets that are part of the structural model but not of the CFD simulation. Major
differences in the geometries such as shrouds or roots have to be removed to keep the
geometries of CSM and CFD as congruent as possible.

5.3 HIGH PRESSURE FAN

The design of a transonic low bypass fan stage with a very high pressure ratio in a single
stage configuration was optimized at the German Aerospace Center’s (DLR) Institute
of Propulsion Technology8,9 and tested for its aerodynamic stability at the Institute of
Aeroelasticity10. Here a brief overview over the aeroelastic process using the timelinearized
trace solver is given.

First a steady solution for the considered operation point is computed by trace.
Details of the steady solution are shown in figure 7. Then starting from the mode shape,
i.e. the surface displacements computed by CalculiX, and the CFD mesh the process
described in the sections above the computation of the deformation is performed by using
the aeroelastic pre-processor prep. The result of the mapping process is shown in figure 6.
This step includes the setup of the linear aeroelastic computation, i.e. the interblade phase
angle and the frequency is set. With this setup the linear solver is used to compute a
perturbation field and the damping coefficient. To compute a complete damping curve
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Figure 5: Structured CSM grid and the surface displacements (right) mapped to the CFD mesh (only
every second grid line in spanwise direction shown) (left).

the computation of the deformation and the subsequent linear solver step is repeated for
each interblade phase angle. The mapping of the surface displacements has not to be
performed again if they are independent of the nodal diameter, i.e. independent of the
interblade phase angle. The resulting damping curves for the first three mode shapes are
given in figure 8.

6 CONCLUSION

A mapping algorithm and an elliptic mesh deformation tool have been developed in
order to facilitate the aeroelastic pre-process for arbitrary geometries and topologies. For
the three presented applications, a turbine vane stator, a turbine vane cluster and a
fan with a high pressure ratio, it was shown that the implemented algorithm works well
even under unfavourable conditions like completely unaligned CSM and CFD geometries
or meshes with vastly differing sizes of surface elements. Only geometric data, i.e.vertex
coordinates and surface elements, have been used to obtain these results and no knowledge
about the topology of these cases has been used. This shows that the presented tool is
robust with respect to the quality of the input data and therefore highly suitable for use
in automatic workflows as required for industrial design processes.
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Figure 6: Structured CSM grid and data (left) and the surface displacements mapped to the CFD mesh
(right).
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Figure 7: trace’s steady flow solution as used by the linear solver. (Courtesy of M. May.)

Figure 8: Damping results of trace’s timelinearized solver for the three modes mapped with prep.
(Courtesy of M. May.)
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[5] Jöcker, M., 2001. Information for 3D Computations of the STCF 11 Test Cases. Tech.
Rep. HPT-11/01, Avdelningen för Kraft- och Värmeteknologi, Kungliga Tekniska
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