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Abstract. This paper presents Solution Verification and Validation exercises for the
flow over a backward facing step. Two completely different flow solvers are applied: Re-
FRESCO, using a finite-volume discretization of the momentum equations in strong con-
servation form and a pressure-correction algorithm based on the SIMPLE approach; PAR-
NASSOS, discretizing the non-conservative continuity and momentum equations written
in Contravariant form with finite-differences. Two sets of geometrically similar single-
block structured grids are selected to perform Solution Verification. A procedure based on
a least squares version of the Grid Convergence Index is used to estimate the numerical
uncertainty of functional and local flow quantities.

The iterative error is evaluated for the ReFRESCO calculations by comparing solutions
obtained with less demanding convergence criteria to flow fields converged to machine ac-
curacy. As already experienced in similar exercises with PARNASSOS, the iterative error
may be 2 to 3 orders of magnitude larger than the L∞ norm of normalized residuals and/or
flow variable changes between consecutive iterations at the last iteration performed. Fur-
thermore, the iterative errors must be two orders of magnitude smaller than the discretiza-
tion error to have a negligible influence on the determination of the latter.

The present Solution Verification exercise confirms that misleading conclusions may be
drawn from numerical simulations without the knowledge of the numerical uncertainty.

An example of the application of the ASME V&V-20 Validation procedure is presented
for an horizontal velocity profile downstream of the step. It is clear that the proposed pro-
cedure is a step forward compared to the simple graphical comparisons between numerical
predictions and experimental data.
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1 INTRODUCTION

Many practical problems of fluid dynamics are currently analysed by numerical
solution of the mathematical models that simulate the physics of the flows, i.e. by Com-
putational Fluid Dynamics (CFD). In the early years of the development of CFD, it was an
achievement already to demonstrate the ability to address the problems using numerical
solutions. However, in many current applications of CFD it is no longer enough to pro-
duce “a solution”. The credibility of the simulations must be established with Verification
and Validation1.

Verification and Validation (V&V) are distinct activities1:

• Verification is a purely mathematical exercise consisting of two parts:

1. Code Verification, intending to demonstrate by error evaluation the correctness
of the code that contains the algorithm to solve a given mathematical model.

2. Solution Verification, attempting to estimate the error/uncertainty of a given
numerical solution, for which, in general, the exact solution is unknown.

• Validation is a science/engineering activity meant to show that the selected model
is a good representation of the “reality”.

This means that Verification deals with numerical (and coding) errors, whereas Validation
is related to modelling errors. In the present paper, we will not address Code Verification.
An example of Code Verification for a RANS solver (also used in this study) is presented
in Eça et al2.

Although there is ample literature on V&V available, as for example the recent books
by Roache3 and by Oberkampf & Roy4, there are no “all purpose” procedures available
for applications involving complex turbulent flows. In fact, the series of Workshops5,6, 7

organized in Lisbon from 2004 to 2008 demonstrated how cumbersome - and at the same
time how useful - uncertainty estimation for numerical solutions of the Reynolds-Averaged
Navier-Stokes (RANS) equations is. With regard to Validation, the tests performed at
the 2008 Workshop7 with a simplified form8 of the procedure recently proposed by the
ASME V&V-20 committee9 showed that it is possible to do much better than the common
graphical comparisons between experimental data and numerical solutions.

In this paper, we present Solution Verification and Validation exercises for one of the
test cases used in the Lisbon Workshops5,6, 7: the flow over a backward facing step10.
The aim of the exercise is to compare the outcome of the exercise using solutions ob-
tained with two completely different incompressible flow RANS solvers: ReFRESCO and
PARNASSOS. Both codes will be briefly characterised in the sequel.

Numerical uncertainties are estimated with a procedure relying on a least squares
version11 of the Grid Convergence Index1 and on the data range. Validation is performed
with the simplified form of the ASME V&V-20 procedure8.
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The paper is organized in the following way: for the sake of completeness, section 2
presents a brief description of the two flow solvers; the solution verification and validation
procedures are presented in section 3 and the selected test case is briefly described in
section 4; the solution verification and validation exercises are presented in sections 5 and
6. Finally, section 7 summarizes the main conclusions of this study.

2 FLOW SOLVERS

2.1 ReFRESCO

ReFRESCO is a MARIN spin-off of FreSCo12, a code which was developed within
the VIRTUE EU Project together with TUHH and HSVA. It solves multi-phase (un-
steady) incompressible flows with the RANS equations, complemented with turbulence
models and volume-fraction transport equations for different phases. The equations are
discretized using a finite-volume approach with cell-centered collocated variables. The
equations are discretized in strong-conservation form and a pressure-correction equation
based on the SIMPLE algorithm (see for example Ferziger & Péric13) is used to ensure
mass conservation. All equations are segregated in the iterative solution process. The
implementation is face-based, which permits grids with elements consisting of an arbi-
trary number of faces (hexahedrals, tetrahedrals, prisms, pyramids, etc.), and if needed
h-refinement (hanging-nodes). The code is parallelized using MPI and sub-domain de-
composition, and runs on Linux workstations, clusters and super-computers.

2.2 PARNASSOS

The 2-D version of PARNASSOS solves the Reynolds-averaged Navier Stokes equa-
tions for steady, incompressible flows, using eddy-viscosity turbulence models, and is
available in finite-difference14 and finite-volume15 versions. Here the former version is em-
ployed, which means that finite-difference approximations are applied to the continuity
and momentum equations written in Contravariant form, which is a weak conservation
form. The momentum balance is applied along the directions of the curvilinear coor-
dinate system rather than the directions of the reference coordinate system. The code
has a collocated arrangement with the unknowns and the discretization centered at the
grid nodes. The linear system of equations formed by the discretized continuity and mo-
mentum equations is solved simultaneously. The solution of the turbulence quantities
transport equations is uncoupled from solving the continuity and momentum equations.

3 SOLUTION VERIFICATION AND VALIDATION PROCEDURE

3.1 Solution Verification

The aim of Solution Verification is to estimate the numerical uncertainty, Uφ, of a
solution, φi for which we do not know the exact solution, φexact. Our goal is to define an
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interval that contains the exact solution with a 95% confidence,

φi − Uφ ≤ φexact ≤ φi + Uφ. (1)

We will assess the numerical uncertainty of a given flow variable, Uφ, as the estimated
numerical error estimator multiplied by a factor of safety3. Therefore, solution verification
requires numerical error estimation.

It is commonly accepted1 that the numerical error has three components: the round-off
error; the iterative error and the discretization error. In problems with smooth solutions,
the round-off error becomes negligible with the use of double (15 digits) precision. In
principle, the iterative error may be reduced to the level of the round-off error. However,
that may be excessively time consuming. Therefore, much less demanding convergence
criteria than machine accuracy are generally adopted in practical calculations. However,
it has been demonstrated before16 that the iterative error may be considered negligible
only if it is 2 to 3 orders of magnitude smaller than the discretization error. On applying
such criterion, one meets two difficulties:

1. The normalized residual norms and/or changes between consecutive iterations ob-
tained in the last iteration performed are not reliable estimators of the iterative
error16,17.

2. The discretization error is not known a priori.

The first problem has been demonstrated for several applications of PARNASSOS16,17.
In section 5.1, we will show that it also occurs for ReFRESCO, by comparing solutions
converged to machine accuracy with intermediate solutions obtained with less demanding
convergence criteria.

In the present work, we have reduced the iterative error to machine precision to guar-
antee that its effect on the numerical error is negligible. The dominant contribution to
the numerical uncertainty is then the discretization error.

The basis of the procedure for uncertainty estimation followed in this study is discussed
in Eça et al2. It is constructed for a formally second-order accurate method and it relies
preferably on Richardson extrapolation (RE) and the Grid Convergence Index (GCI)1 to
obtain the numerical uncertainty.

The estimate of the discretization error, ε, using RE is given by:

ε ' δRE = φi − φo = αhp
i . (2)

φi stands for any integral of local quantity, φo is the estimate of the exact solution, α is a
constant, h is the typical cell size and p is the observed order of accuracy. The estimation
of ε requires the determination of φo, α and p, which in our approach is supposed to be
done in the least squares sense using data from at least 4 grids11, ng ≥ 4.

Unfortunately, the determination of p is extremely sensitive to perturbations in the
data11 (even in the least squares sense) and so we can not rely only on δRE to obtain
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ε. Furthermore, we can only obtain an error estimate from RE when the convergence
is monotonic. Therefore, we have introduced three alternative error estimators (as we
mention above, the theoretical order of accuracy is supposed to be p = 2):

δ02
RE = φi − φo = α01h

2 , (3)

δ12
RE = φi − φo = α11h + α12h

2, (4)

and

δ∆M
=

∆M(
hng

h1

)
− 1

, (5)

where ∆M is the data range

∆M = max (|φi − φj|) 1 ≥ i, j ≥ ng . (6)

δ02
RE and δ12

RE are also determined in the least squares sense.
Following the approach of Roache1, the error estimator is converted to a numerical

uncertainty by introducing a safety factor, Fs,

Uφ = Fs |ε| . (7)

Therefore, we have two decisions to make to obtain the uncertainty estimate:

1. Select the most appropriate error estimator.

2. Select the safety factor Fs.

Herein we proceed as follows:

• Determine the apparent convergence condition from the least squares fit:

– Monotonic convergence for p > 0.

– Oscillatory convergence for nch ≥ INT(ng/3) where nch is the number of triplets
with (φi+1 − φi)(φi − φi−1) < 0.

– Otherwise, anomalous behaviour.

• Determine the uncertainty according to the apparent convergence condition:

– Monotonic convergence:

∗ 0.95 ≤ p ≤ 2.05:
Uφ = 1.25δRE + Us. (8)

∗ p ≤ 0.95:
Uφ = min

(
1.25δRE + Us, 3δ

12
RE + U12

s

)
. (9)
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∗ p ≥ 2.05:
Uφ = max

(
1.25δRE + Us, 3δ

02
RE + U02

s

)
. (10)

– Oscillatory convergence:
Uφ = 3δ∆M

. (11)

– Anomalous behaviour:

Uφ = min
(
3δ∆M

, 3δ12
RE + U12

s

)
. (12)

Us, U02
s and U12

s are the standard deviations of the least squares fits and the safety
factor, already included in the previous equations, follows the basic options of the GCI1:
Fs = 1.25 if p is reasonable (0.95 ≤ p ≤ 2.05) and Fs = 3 otherwise.

3.2 Validation procedure

The aim of Validation is to estimate the modelling error of a given mathematical
model in relation to a given set of experimental data (physical model). It involves nu-
merical, experimental and parameter uncertainties. Thus the mathematical model can be
validated against that particular experiment. If the validation is successful one cannot
say that the code is validated, only that the model is valid for the flow problem at hand.

A well-documented procedure has been proposed recently by the ASME9,8. It compares
two quantities:

• The validation uncertainty, Uval,

Uval =
√

U2
num + U2

input + U2
D.

• The validation comparison error, E,

E = S −D.

Unum is the numerical uncertainty for the quantity φ chosen (Uφ from the previous section),
Uinput is the parameter uncertainty, (due to possible uncertainties in the fluid properties,
flow geometry and/or boundary conditions), and UD is the experimental uncertainty. S
is the numerical prediction (φi in the previous section) and D the experimental value.

The goal of the procedure is to determine the interval that contains the modelling
error, δmodel, with 95% confidence: [E − Uval, E + Uval]. The outcome of the exercise is
decided from the comparison of |E| with Uval:

• If |E| >> Uval the comparison error is probably dominated by the modelling error,
which indicates that the model must be improved.
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• For |E| < Uval, δmodel is within the “noise level” imposed by the numerical, exper-
imental and parameter uncertainties. It can mean two things: if E is considered
sufficiently small, the model and its solution are validated (with Uval precision)
against the given experiment; else the quality of the numerical solution and/or the
experiment should be improved before conclusions can be drawn about the adequacy
of the mathematical model.

4 TEST CASE

The selected test case is the flow over a backward facing step10 that has been
used as one of the test cases of the Lisbon Workshops5,6, 7. The experimental data and
their uncertainty are taken from Driver et al10 and Jovic & Driver18. All the calculations
performed in this study were performed using the one-equation eddy-viscosity model
proposed by Spalart & Allmaras19.

4.1 Computational domain and boundary conditions

The computational domain of the flow around a backward facing step is bounded
by two walls and two x constant planes, −4H upstream and 40H downstream of the
step, where H is the step height. The Reynolds number based on the step height and the
velocity of the incoming flow, Uref , is 5× 105.

In the present calculations, we have specified all the required flow quantities at the inlet,
with the exception of the pressure coefficient, using the profiles available from the Lisbon
Workshops5,6, 7. The pressure coefficient is linearly extrapolated from the interior of the
domain. At the walls, the no-slip and impermeability conditions are applied, which leads
to ux = uy = 0. The dependent variable of the turbulence model ν̃, an undamped eddy-
viscosity, is set equal to 0. At the outlet boundary, ux, uy and ν̃ are linearly extrapolated
from the interior of the domain. The pressure coefficient is set equal to zero.

Set A Set B

Figure 1: Illustration of the two grids sets for the calculation of the flow over a backward facing step.

4.2 Grid sets

We have selected two sets of 11 single-block, structured, geometrically similar grids,
A and B, to perform the calculations of the flow over a backward facing step. Set A con-
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tains non-orthogonal curvilinear grids with the same number of nodes in both directions.
At the walls, the grids are orthogonal. Set B has straight lines connecting the bottom
and top walls and the same number of nodes in both directions. In both sets, the coarsest
grids have 101×101 nodes (104 cells) and the finest grids 401×401 nodes (1.6×105 cells)
covering a grid refinement ratio of 4. The grids in the vicinity of the step are illustrated
in figure 1. Under the restrictions of a single-block structured grid, the grid properties
are not as good as they might be for unstructured or for multi-block structured grids.

5 VERIFICATION EXERCISE

As we mentioned above, all the calculations were performed with 15 digits precision
and the iterative error was reduced to machine accuracy. This ensures that round-off and
iterative errors are negligible in the determination of the numerical uncertainty. Before
we present the results of the estimated discretization uncertainties, we illustrate the need
to use reliable iterative error estimators when the convergence criteria are substantially
less demanding than machine accuracy.

5.1 Iterative error

Practical calculations of complex turbulent flows are seldom being converged to ma-
chine accuracy. It is then often supposed that the normalized residuals and/or changes
between consecutive iterations obtained in the last iteration, are a proper measure for
the iterative error. However, as illustrated for the 2-D and 3-D15,20 versions of PARNAS-
SOS16,17, these quantities are not reliable iterative error estimators.

Unlike the discretization error that requires the knowledge of the exact solution, a good
estimate of the iterative error may be obtained from a solution converged to machine
accuracy. In this paper, we present for ReFRESCO a similar study as reported earlier for
PARNASSOS16,17.

Calculations were performed for the grids of set A with different convergence criteria
based on the largest value of the L∞ norm of the normalized residuals of the x and y
momentum equations, pressure correction and ν̃ transport equation. The residuals were
made non-dimensional using reference variables and the main diagonal of the algebraic
systems of equations. This means that the normalized residuals are equivalent to the
non-dimensional variable changes for a simple Jacobi iteration.

Four different levels of the convergence tolerance, et, were tested: 10−3, 10−5, 10−7 and
10−13. The latter et value corresponds to machine accuracy. At the start of the iterative
computation process uniform values for all variables were set, with the exception of the
imposed boundary conditions.

As an example of the iterative convergence of ReFRESCO, figure 2 presents the L∞
norms of the normalized residuals and of the changes between consecutive iterations as
a function of the iteration counter for the 200 × 200 cells grid. The two quantities show
equivalent convergence histories with all flow variables converging with similar rates to
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Figure 2: L∞ norms of the normalized residuals and of the changes between consecutive sweeps as a
function of the iteration counter for the 200× 200 cells grid.

machine accuracy. The number of iterations required to satisfy et = 10−13 is roughly
four times larger than the number of iterations that satisfies a convergence criteria of
et = 10−7.

For the three highest values of et, we have computed the L∞, L1 and L2 norms of
the iterative errors (the difference to the solution converged to machine accuracy) of the
non-dimensional mean flow variables ux, uy and Cp (ρU2

ref is the reference pressure). The
results for ux (one of the variables that drives convergence) are illustrated in figure 3 as
a function of the grid refinement ratio, hi/h1, which in this case is simply defined by

hi

h1

=

√√√√(Ncells)1

(Ncells)i

. (13)

The plots in figure 3 present the three error norms of the horizontal velocity component
in the 11 grids of set A and the iterative error distribution for the 200 × 200 cells grid
for et = 10−3, et = 10−5 and et = 10−7. The data confirm all the trends observed with
PARNASSOS16,17:

• All error norms of the iterative error are consistently larger than the L∞ norm of
the normalized residuals in the last iteration performed. For the L∞ norm of the
iterative error, they differ more than 3 orders of magnitude!

• As expected, for the same convergence criterion, the iterative error increases with the
grid refinement due to the decrease of the iterative convergence rate (no multigrid
techniques were applied in this study).
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Figure 3: (left) Iterative errors for the horizontal velocity component, ux, in the grids of set A. Con-
vergence criteria, et, based on the L∞ norm of the normalized residuals. (right) Iterative error field for
200× 200 cells grid, hi = 2h1.

• The iterative error distributions obtained for the three convergence criteria show
several similarities. In a large percentage of the field, the iterative error is larger
than et. It is clear that the solution obtained for et = 10−3 (which is suggested as
the default convergence criterion in some commercial codes) has an unacceptable
iterative error.

In the next section we will present an example of the consequences of insufficient
iterative convergence on the estimation of the discretization error/uncertainty.

5.2 Discretization error/uncertainty

Several functional and local flow quantities have been proposed for the 2008 Lisbon
Workshop7. In the present paper, we have selected some of these quantities to compare the
results obtained with ReFRESCO and PARNASSOS. In both codes, the nominal order of
accuracy of the discretization procedure is 2, with the exception of the convective terms
of the ν̃ transport equation that are approximated with first-order upwind (a “standard”
option in the so-called “practical” calculations).

For each of the flow variables presented below, we have estimated the uncertainty of the
finest grid solution based on the data of the six finest grids of each set and the uncertainty
of the hi = 2h1 prediction using the data of the six coarsest grids.

We emphasize that the present comparison is not a Code Verification (which would
require an exact solution) exercise. The aim of this study is to give one more example
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of the misleading conclusions that may be drawn from numerical predictions without the
knowledge of their numerical uncertainty.
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Figure 4: Convergence with the grid refinement of the friction resistance of the top wall resistance
coefficient, (CF )top, for different levels of the convergence criteria (right figure is detail of left figure).

5.2.1 Influence of the iterative error on the estimation of the discretization
error/uncertainty

Two flow quantities have been selected to illustrate the effect of the iterative error
on the estimation of the discretization error/uncertainty: the friction resistance coefficient
of the top wall, (CF )top, and the non-dimensional horizontal velocity component, ux at
x = H, y = 0.1H. Figures 4 and 5 present results of these two quantities as a function of
the grid refinement ratio, hi/h1, for et = 10−3, et = 10−5, et = 10−7 and et = 10−13. The
data refer to the ReFRESCO calculations in grid set A.

Table 1 summarizes the iterative errors, ei, of the three solutions with the highest values
of et (obtained from the difference to the solution converged to machine accuracy) and
the estimated discretization uncertainty, U , based on the data obtained with et = 10−13.

Particularly for et = 10−3 on fine grids the results are dramatic. It is clear that it
is impossible to make a reliable estimation of the discretization error for a convergence
criterion of et = 10−3. For the other two convergence criteria, the results confirm the
experience reported in previous studies16: the iterative error must be two orders of mag-
nitude smaller than the discretization error to have a negligible effect in the determination
of the latter.
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Figure 5: Convergence with the grid refinement of the horizontal velocity component, ux, at x = H, y =
0.1H for different levels of the convergence (right figure is detail of left figure).

Flow Iterative error, ei Discretization
Variable et = 10−3 et = 10−5 et = 10−7 Uncertainty, U , for et = 10−13

(CF )top 3.6× 10−2 3.6× 10−5 1.1× 10−7 2.7× 10−5

ux 1.3× 10−1 6.2× 10−3 1.4× 10−4 2.0× 10−2

Table 1: Iterative errors, ei, for the friction resistance of the top wall resistance coefficient, (CF )top, and
the horizontal velocity component, ux, at x = H, y = 0.1H. Estimated discretization uncertainty, U , for
the solution converged to machine accuracy.

5.2.2 Functional flow quantities

Figure 6 presents the convergence with grid refinement of the friction resistance of
the top and bottom wall, (CF )top and (CF )bottom and the pressure resistance coefficient,
(CD)bottom, of the vertical wall of the step. The plots contain the data obtained with
ReFRESCO and PARNASSOS in the two grid sets.

• All the estimated uncertainties are consistent, i.e. there is overlap between the error
bars of the two codes in the two grid sets.

• Some of the estimated uncertainties are surprisingly large. However, these are a
consequence of the inability to establish the observed order of accuracy, p, or due
to an unexpected small value of p. This is not a surprising result7, because even
with the present grid density it is almost sure that most of the data are outside the
“asymptotic range”.

• As experienced in many other exercises, the convergence of different flow quantities
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Figure 6: Convergence with the grid refinement of the the friction resistance of the top and bottom wall,
(CF )top and (CF )bottom and the pressure resistance coefficient, (CD)bottom, of the vertical wall of the step.

does not show similar trends (independently of the selected code).

• Also the two codes show distinct behaviour in grid convergence. They should ap-
proach the same solution for h → 0, but their different numerical properties cause
that for finite h their solutions may differ.

• Only (CF )top exhibits the expected trend of an uncertainty for h1 smaller than
the value obtained for hi = 2h1. However, (CF )top is the only variable that gave
consistent observed orders of accuracy.

• Fair judgement of the quality of numerical solutions based on single-grid studies
without any knowledge of the numerical uncertainty is almost impossible.

5.2.3 Local flow quantities

The convergence of local flow quantities is illustrated at two of the selected locations
of the Lisbon Workshops5,6, 7: x = H, y = 0.1H and x = 4H, y = 0.1H. Figure 7 presents
the behaviour with grid refinement of the non-dimensional horizontal and vertical velocity
components, ux and uy and of the non-dimensional eddy-viscosity (reference value equal
to UrefH), νt, for the four sets of calculations.

The results confirm all the difficulties experienced before in uncertainty estimation for
RANS solutions.

• The convergence properties depend on the selected code, grid set, location and flow
variable. We have left out the turbulence model because all the data was obtained
with the same model.

• Although unpleasantly large in some cases, the estimated error bars are still consis-
tent with a single exception: ux at x = 4H, y = 0.1H. However, the two “failures”
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Figure 7: Convergence with the grid refinement of the non-dimensional horizontal and vertical velocity
components, ux and uy and eddy-viscosity, νt, at x = H, y = 0.1H and x = 4H, y = 0.1H.

(one for each code and each grid set) are obtained from data that is “suspiciously”
similar in the last six grids of the sets.

• The variety of values obtained for the observed order of accuracy is not encouraging
for “practical procedures” that rely on it.

As for the functional flow quantities, the data plotted in figure 7 confirm that the
numerical uncertainty is fundamental information for the assessment of the quality of any
numerical prediction. Furthermore, as demonstrated in the previous sections, the concern
about numerical errors is not restricted to discretization errors.

6 VALIDATION EXERCISE

As for the solution verification test, there were several flow quantities proposed
for the Validation exercise of the 2008 Lisbon Workshop7. In the present study, we will
restrict ourselves to the horizontal velocity profile at one step height downstream of the
step corner x = H. It must be mentioned that this simple exercise requires interpolation
of the computed flow fields to the measured locations. A careful choice of the interpolation
procedure is required to avoid numerical solutions contaminated by the interpolation error.
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The discussion of such procedures is out the scope of this paper. However, it is obviously
easier to perform such interpolations in a structured grid than in an unstructured grid.
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Figure 8: Horizontal velocity component, x, profile at x = H. Comparison of predictions and experimental
data.

Figure 8 presents the comparison of the ReFRESCO and PARNASSOS predictions
with the experimental data10. The figure includes two plots: a conventional compar-
ison including the error bars of numerical predictions and experimental measurements
(which is not really conventional); the comparison of validation uncertainty, Uval, with
the comparison error, |E|. Both options present useful information:

• Although the estimated numerical uncertainties are not the same for both codes,
the outcome of the validation exercise is similar for the two codes.

• In the near-bottom (flow reversal) region it is clear that there is a mismatch between
the experimental data and the predictions. The comparison error, |E|, is above the
validation uncertainty, Uval showing that there is a modelling deficiency.

• For 1.5H < y < 6H, |E| is clearly smaller than Uval. This means the numerical
solution is “validated”. However, the level of the validation uncertainty is Uval '
0.02. If such level is considered too large, the reduction of Uval is mainly dependent
on the experimental uncertainty. Therefore, it is the experimental data that require
improvement!

• Close to the top wall (y > 6H), |E| is (again) larger than Uval. However, in this
region the results are independent of the selected turbulence model7. This suggests
that the problem is originated by the specification of the inlet boundary conditions.
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Due to the absence of experimental information10, it was assumed that the top wall
boundary-layer was equal to the measured bottom wall boundary-layer7.

7 CONCLUSIONS

The present paper has presented a Solution Verification and Validation exercise for
the flow over a backward facing step. The study was performed with two completely dif-
ferent RANS solvers complemented by the one-equation eddy-viscosity model of Spalart
& Allmaras. ReFRESCO uses a finite-volume discretization of the momentum equations
written in strong conservation form for volumes of arbitrary shape; continuity is solved
indirectly with a pressure-correction equation based on the SIMPLE algorithm. PAR-
NASSOS solves the continuity and momentum equations written in Contravariant form
as a coupled set, using finite-difference approximations.

Two sets of geometrically similar single-block structured grids were selected to perform
Solution Verification. A procedure based on a least squares version of the Grid Conver-
gence Index was used to estimate the numerical uncertainty of functional and local flow
quantities.

The iterative error was evaluated for the ReFRESCO calculations (similar exercises
have been performed previously for PARNASSOS) by comparing solutions obtained with
less demanding convergence criteria to flow fields converged to machine accuracy. The
results confirmed the main trends observed in previous studies:

• Norms of normalized residuals and changes between consecutive iterations are not
reliable error estimators.

• The iterative error may be 2 to 3 orders of magnitude larger than the L∞ norm of
normalized residuals and/or flow variable changes between consecutive iterations at
the last iteration performed.

• The iterative errors must be two orders of magnitude smaller than the discretization
error to have a negligible influence in its determination.

For the selected flow quantities, consistent error bars were obtained for the finest grids
solutions obtained with ReFRESCO and PARNASSOS. However, in several cases, the
estimated uncertainties are unpleasantly large. Bearing in mind the properties of the se-
lected grid sets and the reported experiences with RANS solvers in similar exercises this is
not really a surprising result. Furthermore, the results obtained show convergence proper-
ties that depend on the code, grid set, flow variable and selected location (the turbulence
model is not in the list because we have used only one). There are several examples in
the data that show large mismatches between the predictions of the two codes for a given
grid refinement level. However, these are only a consequence of different grid convergence
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properties of the codes. Therefore, the present exercise confirms that misleading con-
clusions may easily be drawn from numerical simulations without the knowledge of the
numerical uncertainty.

An example of the application of the ASME V&V-20 Validation procedure is presented
for an horizontal velocity profile downstream of the step. It is clear that the proposed
procedure is a step forward compared to the simple graphical comparisons between nu-
merical predictions and experimental data. It clearly points out where improvements are
required in the mathematical model and where better experimental data are needed to
achieve validation.
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