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Abstract. A parametric numerical study is implemented to examine the unsteady 

aerodynamic responses to incident 1D and 2D time-harmonic vortical gusts. The 

analysis is focused on the low-Re number unsteady flows typical of MAV applications in 

which a gust encounter can induce a particularly significant aerodynamic and 

aeroelastic response. Efficient models are developed to introduce the flow perturbations 

inside the computational domain through the source terms in the governing momentum 

equations. High-accuracy Navier-Stokes simulations are conducted for SD7003 airfoil 

installed at the angles of attack of 4
0
 and 8

0 
in the laminar flow regime with M∞ =0.1 

and Re=10,000. The varied parameters include the gust reduced frequency and 

amplitude. The gust aerodynamic response is examined in comparison with results from 

the corresponding time-harmonic pitching airfoil simulations. The unsteady predictions 

are matched against theoretical incompressible inviscid solutions revealing the relative 

dominance of viscous and inviscid effects in the gust and pitching responses for the 

selected flow regimes.  
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1 INTRODUCTION 

The current study is motivated by the need to develop an accurate, robust prediction 

tool for analysis of nonlinear aerodynamic and aeroelastic responses of a fixed-wing 

Micro Air Vehicle (MAV) to impinging vortical unsteady flow perturbations (gusts). 

Despite a certain degree of maturity reached by low-Re aerodynamics research in 

recent years [1, 2], very few studies examined the effects of gust impact on the MAV 

wing aerodynamic performance. On the other hand, while even small wind gusts and 

atmospheric turbulence may be of minor significance to larger, heavier aircraft, they 

can be devastating for MAV stability and control.  

As reviewed, e.g., in Ref. [3], most experimental and numerical works in the area of 

MAV unsteady aerodynamics considered canonical pitch-ramp and plunge airfoil 

maneuvers in order to systematically examine patterns of separated vortical flow 

dynamics, especially including the aerodynamically critical processes of laminar 

separation bubble (LSB) formation and burst and related transition phenomena. A few 

recent studies [4-7] considered time-harmonic oscillations of the free-stream velocity 

which primarily impacts the dynamics of the airfoil boundary layer transition and 

causes hysteresis in airfoil aerodynamic characteristics at low Re numbers.  

In this work, we focus on the airfoil response induced by the convected upwash 

component of the unsteady, non-uniform upstream flowfield which directly affects the 

unsteady aerodynamic loading. In particular, the gust interaction model producing the 

time-harmonic gust-induced variations of the effective airfoil angle-of-attack is 

examined. For the transverse 1D gust, the numerical predictions are compared against 

the classical linearized inviscid, incompressible unsteady aerodynamic theory in which 

the corresponding flat-plate response to such disturbance is analytically described by 

Sears’ solution. Furthermore, both numerical (viscous) and analytical (inviscid) gust 

response predictions are compared against corresponding solutions obtained for the 

pitching airfoil with equivalent induced upwash velocity component. The results of the 

parametric study conducted for SD7003 airfoil (used as a benchmark in the majority of 

recent low-Re studies) elucidate relative significance of viscous and inviscid effects in 

the MAV airfoil unsteady aerodynamic response for a range of gust parameters 

including gust amplitude and  frequency. Importantly, the study reveals the major 

physical differences existing between the gust and pitching unsteady airfoil responses.   

2 GOVERNING EQUATIONS AND NUMERICAL MODEL 

The employed high-accuracy numerical code FDL3DI [8] solves a set of 

compressible Navier-Stokes equations represented in strong, conservative, time-

dependent form in the generalized curvilinear computational coordinates (ξ,η,ζ,τ) 

transformed from the physical coordinates (x,y,z,t), 
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with assumed perfect gas relationship.  The other variables in Eq. (1) include the 

inviscid flux vectors defined by 
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the transformation Jacobian, ),,,(/),,,( tzyxJ   , the metric quantities defined, 

e.g., as xJx   /)(ˆ 1  , etc., and the transformed flow velocity components, 
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The viscous flux vectors, vF


, vG


 and vH


, are defined, e.g.,  in Ref. [9], while S


 

represents the source term which in the current work generates an unsteady, 

incompressible vortical perturbation upstream of the wing section. All the flow 

variables are normalized by their respective reference freestream values except for 

pressure which is nondimensionalized by 2

u . 

Note that the governing equations are represented in the original unfiltered form 

used unchanged in the laminar, transitional or fully turbulent regions of the flow. Refs 

[10, 11] provide further details on the code’s Implicit LES (ILES) procedure in which a 

high-order low-pass filter operator is applied to the dependent variables during the 

solution process, in contrast to the standard LES addition of sub-grid stress (SGS) and 

heat flux terms. The resulting filter selectively damps the evolving poorly resolved 

high-frequency content of the solution. 

The code employs a finite-difference approach to discretize the governing equations, 

with all the spatial derivatives obtained using the high-order compact-differencing 

schemes from Ref. [12].  For the wing section computations of the current paper, a 

sixth-order scheme is used. At boundary points, higher-order one-sided formulas are 

utilized which retain the tridiagonal form of the scheme. In order to ensure that the 

Geometric Conservation Law (GCL) is satisfied, the time metric terms are evaluated 

employing the procedures described in detail in Ref. [8]. Finally, the time marching is 

accomplished by incorporating a second-order iterative, implicit approximately-factored 

scheme. 

3 TIME-HARMONIC GUST SOURCE MODEL 

The classical configuration of the time-harmonic gust-airfoil interaction problem shown 

in Fig. 1 serves as one of the benchmarks in computational fluid dynamics [13]. It 

generally models the unsteady response of a lifting surface to the incident flow 

turbulence or upstream-generated flow unsteadiness. Such velocity field may be 
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described in terms of the following Fourier spectrum containing various perturbation 

frequencies and wave numbers, 
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For numerical simulations, a single harmonic of the two-dimensional vortical 

perturbation velocity is selected, described in the form,  
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g is the gust intensity relative to the mean flow,  and  are the gust wave numbers in 

the x and y directions, respectively, kg=gc/2u∞ is the imposed gust reduced frequency, 

u∞ is the convective freestream velocity, and c is the airfoil chord. Note that 
 ug /  

and  tan , where  is the angle between the normal vector of the gust phase front 

and the x-axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Gust-airfoil interaction problem. 

 

The approach proposed in this work to generate a 2D gust inside the computational 

domain extends the analysis of Ref. [14] where the analytical 1D gust source was 

developed. The method avoids imposing the proper vortical flow disturbance at the 

upstream boundary [15, 16], and allows using stretched computational grids throughout 

the farfield to minimize spurious reflections.  

First, we assume that the gust source is located in a region of uniform flow aligned 

with the x-direction, and that the interactions between the gust and other waves are 

negligible. Furthermore, since the gust to be generated downstream of the source region 

is incompressible and vortical of the form (2), the source terms should only be added to 

the momentum equations in (1). To this end, to obtain the required solution for

)( , vu ssS 


, we examine the gust momentum equations, 
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Note that, in order to satisfy the divergence-free condition for the incompressible gust, 

the source components are constrained by 0//  ysxs vu . We then seek the 

solution in the form, 
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Focusing for the moment on the first equation in (6), the solution can be expressed as 

follows, 
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the integration is performed to obtain, 
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The second equation in (6) can be integrated in a similar fashion. One may then deduce 

that in order to generate the gust solution of the form (2) downstream of the source 

region bxx s /||  , we should impose the following source components in the 

momentum equations from (1), 
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and the function λ(y) is selected to provide a smooth transition in the y-direction to 

provide a compact region of the uniform gust distribution, e.g., 
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Note that a shear layer is generated in the region where λ(y) varies, but the resulting 

pressure waves have generally very moderate amplitudes.  The generated gust solutions 

are well-behaved as long as the parameters are selected to avoid very high values of the 

constant K. 

To verify the gust source model, the unsteady viscous flow simulations were 

conducted around a stationary SD7003 airfoil section in the laminar flow regime with 

M∞ =0.1 and 000,10/Re    cu . The results in Fig. 2 are presented for 2D gust (2) 

with intensity g =0.1, convecting with 045  and oscillating with reduced frequency

2gk . Note that with the code’s non-dimensionalization, the gust wavenumbers and 

frequency are .42  gg k  A fixed time step of 5105 t  is chosen, which 

corresponds to CFL~10. Fig. 2(a) first illustrates the gust vorticity contours, with the 

box indicating the gust source region.  

 
          (a)                       (b)  

 
 

Figure 2: (a) Contour plot for flow vorticity showing the gust evolution and source region with xs=-1.5, 

ys=2, and b=5   (b) Flow velocity components and vorticity along the line y=1, at t=6. 

 

Figure 2(b) shows the comparison of the analytical and numerical predictions for 

the flow velocity components u, v and vorticity ς at t=6, obtained along the convection 

line y=1. Note that the computed velocities (solid lines) deviate from the analytical 

predictions due to the impact of the potential pressure waves propagating from the 
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airfoil. However, the vorticity plots match very well. The selected gust source region is 

used in all subsequent studies.  

4 PITCHING AIRFOIL MODEL  

For comparison with time-harmonic gust responses, the pitching airfoil motion is 

prescribed in terms of the harmonic variation of the airfoil angle of attack with 

frequency 
pt  relative to the pitching center xp, 

 

  (8) 

                                 (8) 

This variation of the angle of attack translates to the following time-dependent grid 

motion: 

 

                                    (9) 

                  

 

where (X0,Y0) corresponds to the reference airfoil position at α0.  

5 RESULTS AND DISCUSSION 

The current study performs numerical simulations for SD7003 airfoil in the laminar 

flow regime with M∞ =0.1 and 000,10/Re    cu . As before, all variables below are 

non-dimensionalized by the airfoil chord c, flow density ρ∞, and flow velocity u∞. Two 

cases of the background steady-state flows are considered corresponding to the airfoil 

installed at the angles of attack α0=4
0
 and α0=8

0
. The original 649 × 395 × 3 grid 

generated around SD7003 airfoil was previously employed in Ref [17]. For the current 

low-Re study, the coarse 327 × 198 × 3 version was carefully tested against the original 

fine mesh and showed good predictions agreement obtained for flow parameters within 

the range of interest. To improve the computational efficiency, such mesh was 

subsequently selected for this parametric study.  

A fixed time step with 4102 t  is chosen for implicit time marching. All results 

presented here are obtained from the code parallel simulations using ERAU’s 262-

processor Beowulf Zeus cluster (64-bit, 3.2 GHz Intel Xeon, 4GB RAM systems), with 

the mesh efficiently partitioned into a set of 32 overlapped blocks assigned to different 

processors.  

The results of unsteady viscous simulations are obtained for 1D ( 0  in (2)) and 

2D (
g   in (2)) time-harmonic gusts generated by the described above 

momentum source for the gust duration period Tg =10. A detailed comparison with 

analytical solutions and pitching responses is presented for 1D gust, followed by a 

review of observed differences between 1D and 2D gust responses. Two gust 

frequencies are examined corresponding to gust wavelengths λg =2π/g =1, 2.5 (non-

dimensionalized by the chord), with equivalent pitching airfoil frequencies 

pt=2π/λg=2π, 4π/5 in (8). The low-amplitude and high-amplitude gust perturbations are 

investigated for g =0.07 and g =0.35, with the equivalent upwash velocities produced 

by the corresponding pitching airfoil motion with αm=4
0
 and 20

0
.  

 

5.1 Cases with α0=4
0
 

The time-periodic character of the airfoil unsteady lift responses is clearly observed 

in Figs. 3 and 4 presenting comparison of 1D gust and pitching responses for low and 
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high excitation amplitudes, respectively. All the responses eventually transition to the 

steady-state oscillations following the gust passage or the airfoil return to the original 

position. The viscous effects are mainly manifested through “wiggles” in the gust 

response curves especially noticed for low-amplitude cases in Fig. 3 where the induced 

lift fluctuations are comparable to steady-state levels.  Overall, the dominant effect of 

inviscid forces on time-harmonic flow/airfoil oscillations is confirmed by a close 

comparison of obtained lift time histories against predictions of the inviscid, 

incompressible unsteady aerodynamic theory. Presented analytical results include Sears’ 

solution for the thin-airfoil unsteady lift response to impinging sinusoidal transverse 

gust, and the unsteady lift obtained from Theodorsen’s theory for oscillating airfoils 

(both are summarized, e.g., in Ref. [18]). As expected, the lift deviations from the 

linearized inviscid theory are more noticeable for the low-amplitude gust response 

where the viscous effects are more prominent (Fig. 3). An intriguing departure from the 

linear response is also observed for the high-amplitude case and appears most 

pronounced for λg = 2.5 in Fig. 4(b). In general, the differences in amplitudes of the 

airfoil time-harmonic responses to transverse gust vs. pitching can be explained based 

on the arguments from the inviscid incompressible theory. For the higher excitation 

frequency (λg = 1 in Figs. 3-4(a)), the greater circulatory and dominant non-circulatory 

components in the pitching lift response superimpose to far exceed the gust-induced lift 

amplitudes. In contrast, for the low-frequency case with λg = 2.5 in Figs. 3-4(b), the gust 

and pitching circulatory terms are comparable while the non-circulatory pitching 

component becomes much smaller, with the cumulative effect explaining the much 

reduced differences in the resulting lift response amplitudes.  
 

(a) (b) 

 
Figure 3: Airfoil response to gust vs. pitching; αo=4

0
, αm=4

0
. (a) λg =1, (b) λg =2.5.    

 

(a) (b) 

 
Figure 4: Airfoil response to gust vs. pitching; αo=4

0
, αm=20

0
. (a) λg =1, (b) λg =2.5. 
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(a) (b) 

 
Figure 5: Airfoil response to 1D vs. 2D gust; αo=4

0
, g =0.07. (a) λg =1, (b) λg =2.5. 

 
(a) (b) 

 
Figure 6: Airfoil response to 1D vs. 2D gust; αo=4

0
, g =0.35. (a) λg =1, (b) λg =2.5. 

 

The comparison of 1D and 2D gust responses is presented in Figs. 5 and 6 for g =0.07 

and 0.35, correspondingly. For the small-amplitude excitation with more pronounced 

viscous effects in the aerodynamic response, the additional oscillatory streamwise 

velocity component in the 2D gust cases appears to contribute to a similar (for λg =2.5) 

or even larger (for λg =1) amplitudes of the unsteady lift despite the fact that the upwash 

components have actually reduced (from Eq. (3)). In contrast, for the large-amplitude 

cases in Fig. 6 with dominant unsteady inviscid forces, the opposite trend is noted.    

 

5.2 Cases with α0=8
0
  

With the airfoil approaching the stall conditions, the major difference from the less-

loaded airfoil cases appears in the more pronounced viscous effects observed in the 

airfoil response to the low-amplitude excitations (Fig. 7). The cases there reveal a less 

satisfactory comparison with corresponding inviscid predictions. Moreover, the 

examined low-amplitude cases take longer time to transition back to the original steady-

state oscillations. Similar to the previous cases with α0=4
0
, the inviscid theory shows 

good agreement with predicted high-amplitude lift responses in Fig. 8, although it 

somewhat deteriorates for the low-frequency pitching in Fig. 8(b).  

The enhanced boundary-layer vortical dynamics in the case of the low-amplitude 2D 

gust (Fig. 9) reveals complexity of  viscous effects in the unsteady aerodynamic 

response which does not necessarily follow the trend observed in the corresponding 

cases with α0=4
0
. Note, in particular, a remarkable spike in the unsteady lift for λg =2.5.   
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For the high-amplitude cases in Fig. 10, the 2D gust airfoil response appears much 

stronger for the higher gust frequency (λg =1), while both 1D and 2D gusts produce 

similar responses for λg =2.5. Also, Figs. 10(a) and 10(b) reveal a delayed lift response 

following the passage of the 1D and 2D gusts, correspondingly, which is commented on 

further below.   

 
(a)      (b) 

 
Figure 7: Airfoil response to gust vs. pitching; αo=8

0
, αm=4

0
. (a) λg =1, (b) λg =2.5. 

 
(a)      (b) 

 
Figure 8: Airfoil response to gust vs. pitching; αo=8

0
, αm=20

0
. (a) λg =1, (b) λg =2.5. 

 
(a) (b) 

 
Figure 9: Airfoil response to 1D vs. 2D gust; αo=8

0
, g =0.07. (a) λg =1, (b) λg =2.5. 
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(a) (b) 

 
Figure 10: Airfoil response to 1D vs. 2D gust; αo=8

0
, g =0.35. (a) λg =1, (b) λg =2.5. 

 

 

5.3 Comparison of α0=4
0
 and 8

0
 results  

From the standpoint of MAV aerodynamic performance and the overall vehicle 

controllability, it is important to examine in more detail the change in the airfoil gust vs. 

pitching responses with shift in the airfoil steady loading. A comparative analysis of lift 

predictions obtained for α0=4
0
 vs. α0=8

0
 is presented here based on 1D gust simulations. 

For g =0.07, the corresponding gust and pitching responses are shown in Fig. 11. 

Similar comparison for g =0.35 
 
is provided in Fig. 12. For λg = 1, these results are 

further illustrated in Figs. 13-14 showing the instantaneous vorticity contours for α0=4
0
 

vs. α0=8
0
 cases for both selected excitation amplitudes. The corresponding vorticity 

plots produced from gust and pitching simulations are shown side-by-side, and 

synchronized by showing four phases of the established cycle of induced lift oscillations 

corresponding to (top to bottom): average lift with increasing amplitude (Clo+), 

maximum lift (Clmax), average lift with decreasing amplitude (Clo-), and minimum lift 

(Clmin). Such comparison provides an important correlation of aerodynamic forces with 

dynamics of unsteady viscous flow and airfoil motion.  

For the low-amplitude cases in Fig. 13, a much stronger dynamics of separated 

boundary layer is noted for the higher steady load.   In correlation with the lift response 

observed in Fig. 11, the inviscid unsteady forces due to the induced vorticity shed in the 

wake dominate in the pitching response, while the dynamic-stall vortices convecting 

along the airfoil’s suction side manifest the nonlinear viscous effects which appear more 

pronounced in the gust interaction cases. Overall, the vorticity patterns induced by 

pitching and gust reveal noticeable similarity.  

As noted before, the viscous effects appear mainly subdued by inviscid forces in the 

cases of high-amplitude gust and pitching excitations, for both steady-state angles of 

attack. The gust-induced lift oscillations observed in Fig. 12 are identified with periodic 

vortex shedding in the wake as the induced upwash oscillates with the periods of 

observed in Fig. 14 gust vorticity waves. In the same plots, the inviscid dynamics of 

separated leading- and trailing-edge vortices observed for a period of pitching 

oscillation determines the pitching-induced aerodynamic response. With the high-

amplitude airfoil motion, the vorticity contours produced in the gust and pitching 

response simulations hardly look alike. It is also interesting to note the airfoil position 

and the structure of vortices corresponding to different phases of the lift cycle in each 

case.       
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   (a)      (b) 

 

 
Figure 11: Airfoil response to gust (top) vs. pitching (bottom): αo=4

0
 vs. 8

0
, αm=4

0
. (a) λg =1, (b) λg =2.5. 

 

   (a)      (b) 

 

 
Figure 12: Airfoil response to gust (top) vs. pitching (bottom): αo=4

0
 vs. 8

0
, αm=20

0
. (a) λg =1, (b) λg =2.5.  
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   (a)      (b) 

      

    

    

    
 

Figure 13: Vorticity contours for time-harmonic gust (left) vs. pitching (right) for a period of lift 

oscillation corresponding (top to bottom) to Clo+, Clmax, Clo-, Clmin ; αm=4
0
, λg =1. (a) αo=4

0
, (b) αo=8

0 .     

 

Returning to Fig. 11, note that the comparison of the unsteady aerodynamic time 

histories for low-amplitude excitations points to another major difference in the airfoil 

responses for α0=4
0
 and α0=8

0
, related to the delayed aerodynamic reaction following 

the gust or pitching removal. For the low steady loading, the transition back to the 

steady-state oscillations is rather smooth and uneventful in all cases. In contrast, an 

intricate interplay of stronger nonlinear viscous and inviscid forces produces a much 

more complex airfoil reaction for α0=8
0
. For λg = 1, the spikes in the aerodynamic 

responses are observed in Fig. 11 after ∆t≈5 and ∆t≈3 following the removal of pitching 

and gust excitations, respectively. Based on the numerical experiments, the observed 

phenomena are associated with the delayed convection of the induced boundary-layer 

vorticity which eventually bursts into the wake to produce the delayed aerodynamic 

response. On the other hand, in contrast to the gust response which eventually 

transitions to the steady-state fluctuations in all considered cases, the pitching response 

in Fig. 11 for λg =2.5 does not show clear signs of settling. 

Commenting on Fig. 12 for the high-amplitude cases, a similar delayed reaction in 

the aerodynamic response is observed both for gust and pitching excitations. For the 

gust response, the delayed response can be seen for  λg =1 case, whereas an uneventful 

transition is observed for λg =2.5 case.  
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 (a)                (b) 

    

    

    

    
 
Fig. 14. Vorticity contours for time-harmonic gust (left) vs. pitching (right) for a period of lift oscillation 

corresponding (top to bottom) to Clo+, Clmax, Clo-, Clmin ; αm=20
0
, λg =1. (a) αo=4

0
, (b) αo=8

0
.   

 

For the pitching response, the α0=8
0 

cases reveal a similar initial build-up of the 

delayed aerodynamic reaction; however, in contrast to the small-amplitude pitching, 

they show eventual transition to the steady-state oscillations. Such remarkable flow 

regularization for the high-amplitude excitation may again be associated with the 

dominance of unsteady inviscid forces during the airfoil motion and following its return 

to the original position.           

6 CONCLUSIONS  

A parametric numerical study was implemented to examine the low-Re unsteady 

aerodynamic lift and moment responses to incident time-harmonic 1D and 2D vortical 

gusts. Efficient model was developed to introduce the flow perturbations inside the 

computational domain through the source terms in the governing momentum equations. 

High-accuracy Navier-Stokes simulations were conducted for SD7003 airfoil in the 

laminar flow regime with M∞ =0.1 and Re=10,000. Two steady-state flow conditions 

were considered corresponding to the airfoil installed at the angles of attack α0=4
0
 and 

α0=8
0
. The gust parameters included two amplitudes of the induced angles of attack 

corresponding to αm=4
0
 and 20

0
.  
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The effects of gust amplitude and frequency on aerodynamic response were 

examined in comparison with results from the corresponding time-harmonic pitching 

analysis. The unsteady predictions were matched against theoretical inviscid solutions 

revealing the overall dominance of inviscid effects both in gust and pitching responses.  

In agreement with the inviscid unsteady aerodynamic theory, the time-harmonic 

pitching responses far exceeded the gust responses for the higher excitation frequency, 

while the differences significantly reduced for the lower frequency.  The exception was 

observed in the case of the low-amplitude gust interacting with the highly-loaded airfoil 

where the developed dynamic-stall vortices convecting along the airfoil’s suction side 

manifested the presence of nonlinear viscous forces. A delayed aerodynamic response 

following the removal of excitation was noted for α0=8
0
, and observed both in time-

harmonic gust and pitching responses for both excitation amplitudes. 
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