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Abstract. Partitioned approaches for the simulation of multi-physics scenarios allow
for a fast solver implementation but still pose high computational challenges. In addi-
tion, sophisticated numerical methods are required to achieve stable simulations for time-
dependent applications. This in particular holds for fluid-structure interactions with in-
compressible fluids. As the bottleneck is the flow solver, here, we propose a highly memory
efficient flow solver based on our Cartesian PDE framework Peano. The underlying tree-
structured fixed grids allow for the efficient handling of large geometry or even topology
changes and for a hierarchical multilevel coupling with the structure solver. The inhouse
coupling tool preCICE takes over the whole coupling control and makes the involved solver
exchangable independent from each other and without loosing the implemented coupling
method.

1 INTRODUCTION

Partitioned approaches allow for a fast implementation of an environment for fluid-
structure interaction simulations using established solvers for fluid and structure scenar-
ios. The price for this simplicity is the need for sophisticated coupling strategies to achieve
a stable simulation. In addition, the partitioned approach still poses high computational
challenges on the used codes due to for examples complex and moving geometries, small
time steps, high grid resolutions, repeated coupling iterations, etc. Among the two solvers
involved in fluid-structure simulations, the flow solver in general is the bottleneck con-
suming the majority of the runtime of the whole coupled simulation.

The structuredness of adaptive Cartesian grids allows to develop highly memory-
efficient solvers for various types of PDEs. Our flow solver Peano based on such grids will
be proposed in a separate contribution in these proceedings. First results achieved with
an older version of the solver have also been presented in [5]. The current presentation
focusses on the potential of the Peano solver in the context of partitioned fluid-structure
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interactions using our inhouse tool preCICE (formerly called FSIdce) [9]. We will shortly
show the highly efficient realisation of large geometry or even topology changes in an
Eulerian (fixed grid) setting. An additional big advantage of our implementation of adap-
tive Cartesian grid algorithms in the flow solver Peano is the inherent hierarchy of grid
levels, each of which are accessible separately in an efficient way. Thus, algorithms tak-
ing into account different coupling requirements on different grid levels corresponding to
different characteristic Fourier modes become feasible. Section 2 describes the properties
of the Peano flow solver that are important for partitioned fluid-structure simulations.
The coupling tool preCICE and the main concepts behind are presented in Sect. 3. Sec-
tion 4 sketches a concept for multilevel coupling methods and shows the potential of our
combination Peano plus preCICE in such a setting.

2 THE FLOW SOLVER IN PEANO

As mentioned above, we intend to overcome the very high computational and memory
requirements of the flow solver as well as stability problems of the partitioned simulation.
In this contribution, we focus on the aspects of our flow solver implemented in the inhouse
PDE framework Peano that are helpfull with respect to these tasks. A more detailed
description of the framework, the flow solver and the ideas behind can be found in [11, 6,
26, 18].

Our PDE framework Peano works on tree-structured adaptive Cartesian grids (see
Fig. 1 for an example). The structuredness of these grids minimizes memory requirements
as it makes the storage of all kinds of relations between grid elements such as ’vertex
belongs to edge’, ’edge belongs to face’, face belongs to element’ etc. obsolete. Combining
these grids with a cell-wise operator evaluation even eliminates the need to store neighbor
relations of grid elements and specialized operator stencils at boundaries between different
refinement levels: all operators are evaluated cell-wise using only data available in a cell.
The operator-contributions of all four (2D) or eight (3D) neighboring cells accumulate
to the final operator value at a grid vertex, e.g. In case of our flow solver, cell data are
velocities at the grid vertices and pressure at the cells midpoints. Hanging nodes do not
pocess degrees of freedom but, instead, the values at hanging nodes are interpolated from
neighboring non-hanging nodes of the respective father cell. For more details on this
cell-wise operator evaluation see [3, 11]. The resulting memory requirements of the Peano
flow solver are 14 bytes per cell and 20 bytes per vertex in 2D or 18 bytes per cell and 28
bytes per cell in 3D, respectively. As Peano in addition uses a sophisticated data handling
using solely streams and stacks based on a space-filling curve traversal of the grid, also
the cache-efficiency has been optimised. Hitrates in level 2 cache and above are typically
about 99% or higher [11, 26].

Moving and deforming geometries occuring in fluid-structure interaction as a result
of the forces exerted on the structure by the fluid require sophisticated methods for grid
adaption in both the fluid and the structure solver. Whereas the structure solver in general
only has to handle moderate geometry changes, the flow solver faces much larger changes
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up to even topology changes. To illustrate this, just think of the example of a small particle
advected in a fluid flow through a channel: the particle shape does not change at all
whereas the movement of the particle – maybe even touching the channel wall and rotating
– strongly changes the shape of the fluid domain. Due to this fact, Lagrangian moving grid
approaches are convenient for structure solvers. For flow solvers, many approaches have
been developed to combine a good tracing of the actual geometry with a good grid quality
and, of course, low computational costs for grid changes. Arbitrary Langrangian Eulerian
approaches [12, 13, 20, 21] move boundary grid points at the structure surface according
to the structure movement and deformation and adapt the grid in the inner domain
via interpolation or solution of a partial differential equation ensuring suitable numerical
properties of the resulting grid. However, for large geometry changes, these approaches
require frequent remeshing of the domain as mesh deformation becomes too large. In
the last years, however, a trend towards Eulerian fixed grid methods in the field of fluid-
structure interaction simulations has been observed [2, 15, 25]. For these methods, grid
elements and nodes do not change. Instead, the information about the actual geometry is
stored in the grid elements. Various methods such as immersed boundary methods [17],
cut-cell approaches [8], level-set methods [19], or extended finite elements [10] allow to
achieve a good accuracy in the geometry approximation for these fixed grids although
grid lines or faces are of course in general not aligned with domain boundaries.

Figure 1: Left: simple two-dimensional example of a tree-structured adaptive Cartesian grid with a
partitioning into three parts per refinement step and coordinate direction. Middle and right: Eulerian
grid for the fluid domain in a fluid-structure interaction problem. Grid nodes don’t move but adaptive
refinements ’follow’ the changing geometry.

In Peano, the tree-structured grids adapt very efficiently to geometry changes: Peano
works with a marker-and-cell approach and, thus, only has to change cell-markers (fluid
or obstacle) and the local grid refinement according to a geometry change. Figure 1 shows
(very coarse) computational grids for two different times of a fluid-structure interaction
simulation. As geometry changes are local, in general, only a subtree of the whole tree
defining the grid has to be changed in most cases. Thus, one grid traversal is the upper
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bound for the costs of the fluid grid change as a response of a structure movement.

3 THE COUPLING TOOL PRECICE

Our inhouse coupling tool preCICE [9] was developped (under the previous name
FSIdce [4]) in order to provide a flexible and easiliy expandable tool for partitioned
fluid-structure interaction simulations.

The difficulties for such tools are twofold: On the one hand, the theoretical flexibility
of the partitioned approach, that is the possibility to use arbitrary fluid and structure
solvers and to exchange them easily if required, should be maintained. On the other hand,
sophisticated coupling strategies and data mapping methods for non-matching grids have
to be provided in order to achieve a stable and accurate simulation.

preCICE is designed as an own numerical unit that centralizes the complete coupling
functionality including both data mapping and coupling control (see Fig. 2). To hide
solver details from the partner solver, all data that are to be exchanged at the fluid-
structure interface are mapped onto a central coupling surface triangulation. Such, a
solver once being linked to that interface can be coupled with any other solver without
further (technical) efforts.

Figure 2: Concept of our coupling tool preCICE offering a centralized data mapping and coupling control
functionality.

The most costly part of the data mapping is the determination of neighborhood re-
lations or element intersections of the boundary description of a solver and the central
surface triangulation. preCICE provides a highly efficient support for these tasks based
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on quad- (in 2D) or octrees (in 3D) as a fast data access mechanism [4, 9]. Currently,
rather simple projection and linear interpolation methods are implemented. However,
further data mappings can be added via clearly defined interfaces.

The coupling control, that is the realization of a couping strategy is a central compo-
nent of preCICE. Unlike in other approaches using MpCCI [14], for example, preCICE
provides the complete functionality ranging from the definition of the iteration scheme,
over numerical work to be done at the fluid-structure interface, to convergence control.
Thus, this functionality can be used regardless of the actually chosen solvers. Again,
currently implemented versions are limited to simple methods, that is explicit or implicit
staggered coupling with subcycling in the solvers if required. The potential of preCICE,
however, lies in the possibility to realize far more complex coupling strategies such as the
multilevel approaches described in Sect. 4.

Technically, preCICE is realized as a library with a clearly defined application pro-
gramming interface. Data to be communicated between the solvers are coupling control
parameters such as time step and convergence information as well as data at the fluid-
sructure interface. The latter is first mapped to the central interface triangulation and
then send to the partner solver. preCICE implements various communication possibilities
using MPI [16]: The first possibility is the definition of separate global communication
spaces within the solvers. A second possibility works similar to socket-based commu-
nication and uses MPI 2.0 features to start the solvers independently and to setup the
communication via preCICE. This possibility has the drawback that MPI 2.0 is typically
not yet available on supercomputers. The last possibility is to compile the solver codes
into one executable and to start this with several processes.

4 MULTILEVEL COUPLING CONCEPTS

It is known that multilevel coupling approaches can substantially speed up the conver-
gence of partitioned fluid-structure simulations [1, 27]. For incompressible fluids, we even
observe different stability restrictions of a staggered iteration for different fourier modes
of the structure deformation:

[22] examines a simple two-dimensional example with a one-dimensional structure dis-
played in Fig. 3. A fluid domain of length L in x-direction, a flexible beam at the lower
bound and an infinite extension in upper direction is considered. It is assumed that a
subiteration (Gauss-Seidel) method solves the continuous fluid and structure equations
exactly over a time interval δt and exchanges data after the computation of this interval:

zn+1 = structure solve(fluid solve(zn)).

Here, structure solve and fluid solve denote the computation of the exact solution of
the structure or fluid equation over the time interval using the pressure or displacement
at the beam as input parameter. zn is the didplacement of the beam after iteration n.
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This yields the contraction number

ρ(k, ω) = k · π
−1ρ0L

m
+O(ω−1),

for an isolated error mode

en(x, t) = ê(k, ω) exp
(
ik
π

L
x+ iωt

)
,

where k denotes the spatial error frequency relative to the beam length, ω the time
frequency of the beam deformation, ρ0 the fluid density, and m the mass of the beam
per unit length. The conclusion drawn from these results in [22] is that the subiteration
process becomes unstable independent from the time step size δt for big values of ρ0

m
.

However, if we consider ρ(k, ω) not only for the ’worst’ frequency k = 1, we see in
addition that the subiteration process acts as a smoother for the coupled iteration: High
frequency errors are reduced fastly by a low contraction number, whereas low frequencies
are difficult. However, the analysis does not give any hints on the dependence of the
convergence on the spatial resolution of the used solver grids yet.

[7, 24] examine a fluid flow through an axisymmetric flexible tube (see Fig. 3) and also
perform a one-dimensional Fourier analysis of a partitioned subiteration solver, but they
take into account the time and spatial discretization of the solvers. The analysis shows
that the amplification factor of the error modes increases with

1) decreasing spatial frequency of the mode,

2) decreasing time step size, and

3) decreasing spatial grid resolution.

This means in particular that, in contrast to standard multigrid theory for sparse linear
systems, low frequencies do not become easier to handle on spatially coarses grids. The
difficulties even become worse with decreasing spatial resolution. [24] and citations therein
show that the convergence of the partitioned iterations can be improved by a quasi-Newton
method. They suggest to compute the Jacobian only for the unstable (low) frequencies.
This makes the following multilevel solver for the partitioned problem promising:

• perform (quasi-)Newton iterations on coarse grids such that all modes visible at this
spatial resolution are damped well,

• interpolate to finer grids,

• and include those new modes on the fine grid in the Jacobian that are still unstable,
solve others with Gauss-Seidel iterations,

• refine further...
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Figure 3: Schematic view of two example problems: left: example examined in [22]. The fluid domain
of length L in x-direction is bounded at the lower bound by a flexible beam and unbounded in upper
direction. Right: example considered in [7, 24]. An axisymmetric flexible tube of length L and local
radius r.

With such an approach, we could profit from the much cheaper iterations on coarse grids
to reduce the problematic frequencies.

With a combination of our coupling tool preCICE and the flow solver in Peano, we
can realize this multilevel method in an ideal way: As a separate numerical entity, pre-
CICE can implement a multilevel version of interface displacement, which in particular
requires hierarchization and dehierarchization methods (some might call this restriction
and interpolation). In addition, preCICE could compute the Jacobians (or their inverses)
using for example a reduced order approach such as proposed in [23]. Our flow solver
in Peano is capable of performing simulations on a selected grid level (without loosing
memory efficiency) with a multilevel full approximation scheme [26]. Figure 4 illustrates
the multilevel interaction between preCICE and the Peano flow solver in a schematic way.

5 SUMMARY

We have proposed our realization of two out of three necessary components for a
partitioned fluid-structure interaction simulation: The flow solver in the PDE framework
Peano and the inhouse coupling tool preCICE. Both have been designed in order to
achieve maximal numerical and hardware efficiency and, at the same time, maintain the
theoretical flexibility of the partitioned approach to be able to combine arbitrary solvers
with each other and with various coepling strategies and to easily exchange one or several
of these ingredients if required. Based on the analysis of coupling properties for different
Fourier modes of structure deformation found in literature, we have sketched ways to
efficient multilevel coupling approaches and shown the potential of preCICE and Peano
in this context. First results for these concepts will be shown at the conference.
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editors, ECCOMAS CFD 2006, European Conference on Computational Fluid Dy-
namics. TU Delft, 2006.

7



Miriam Mehl†,∗, Bernhard Gatzhammer†, Tobias Neckel†

Peano CFDpreCICE

������
������
������
������
������

������
������
������
������
������

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

������
������
������
������
������

������
������
������
������
������

����������
����������
����������
����������

����������
����������
����������
����������

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

���
���
���
���

���
���
���
���

������
������
������
������

������
������
������
������

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

�������
�������
�������
�������

�������
�������
�������
�������

���������
���������
���������
���������

���������
���������
���������
���������

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��������
��������
��������

��������
��������
��������

�������
�������
�������
�������

����
����
����
����

��
��
��
��

��������
��������
��������

��������
��������
���������������
�������
�������
�������
��
��
��
��

�
�
�
���

��
��
��
��

d S°F−1

d z

Figure 4: Schematic view of a multilevel partitioned solver realization using the flow solver in Peano and
the coupling tool preCICE. The aibility of Peano to work on selected grid levels and the possibility to im-
plement a interface hierarchization and dehierarchization in preCICE allow for an efficient implementation
of the whole coupled environment. The structure solver side is neglected in this illustration.
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ECCOMAS CFD 2006, European Conference on Computational Fluid Dynamics. TU
Delft, 2006.

[6] H.-J. Bungartz, M. Mehl, T. Neckel, and T. Weinzierl. The pde framework peano
applied to computational fluid dynamics. Computational Mechanics, 2009. accepted.

[7] J. Degroote, K.J. Bathe, and J. Vierendeels. Performance of a new partitioned pro-
cedure versus a monolithic procedure in fluid-structure interaction. Comput. Struct.,
87:793–801, 2009.

8



Miriam Mehl†,∗, Bernhard Gatzhammer†, Tobias Neckel†

[8] F. Gao, D. M. Ingram, D. M. Causon, and C. G. Mingham. The development of
a Cartesian cut cell method for incompressible viscous flows. Int. J. Numer. Meth.
Fluids [online]. in press.

[9] B. Gatzhammer and M. Mehl. FSIdce – a modular simulation environment for
fluid-structure interactions. In A. Meister, M. Schäfer, and S. Turek, editors, Fluid-
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