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Abstract. The compact high-order ’Spectral Volume Method’ (SVM, Wang (2002)) de-
signed for conservation laws on unstructured grids is presented. Its spectral reconstruction
is exposed briefly and its applications to the Euler equations are presented through several
test cases to assess its accuracy and stability. Comparisons with usual methods such as
MUSCL show the superiority of SVM. The SVM method arises as a high-order accurate
scheme, geometrically flexible and computationally efficient.
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1 INTRODUCTION

Despite the constant improvements in computational and data processing ressources,
the continuously growing requirements of computational fluid dynamics remain still un-
satisfied. In the last decade, the CFD community showed a growing interest in high-order
approximations for solving these issues (WENO, Discontinuous Galerkin, . . . ). An at-
tractive choice is the ’Spectral Volume Method’ (SVM) proposed and developed by Wang
et al.1,2,3,4.

The SVM method achieves high-order accuracy on unstructured grids through polyno-
mial reconstruction within initial grid cells (spectral volumes, SV) with a subdivision of
the SV into polygonal control volumes (CV). The spectral splitting of the SV is designed
to minimize internal reconstruction oscillations (Van den Abeele et al.5,6). Moreover,
the reconstructed field is continuous over the entire SV, therefore internal faces are not
Riemann problems. This property reduces the fluxes computation cost and contains the
limiters problems to the SV interfaces. The flux computation is finally achieved with
Gaussian quadrature directly inferred from CV states ponderation with a constant and
unique set of coefficients for each SV in the whole domain.

To assess the performance of the SVM method, different test cases were computed with
Typhon, an unstructured open-source code. The numerical experiments were chosen to
cover a large set of flow configurations from continuous quasi-incompressible problems to
shock wave propagations and mixing flows. Time integration is performed with a third
order TVD Runge-Kutta scheme and SVM results are compared to results provided by
classic schemes such as MUSCL.

The results are up to expectations with a significant increase in accuracy and a reduc-
tion in CPU time per cycle compared to a usual second order scheme method using the
same number of control volumes.

2 Spectral Volume Method for the 2D Euler equations

We consider the two-dimensional Euler equations written in the conservative form on
a domain Ω with appropriate initial and boundary conditions:

∂Q

∂t
+
∂E

∂x
+
∂F

∂y
= 0 (1)

with

Q =


ρ
ρu
ρv
e

 , E =


ρu

ρu2 + p
ρuv

u(e+ p)

 , F =


ρv
ρuv

ρv2 + p
v(e+ p)


The domain Ω is discretized into N nonoverlapping triangular cells Si (Fig.1), called
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spectral volumes (SV’s), i.e.,

Ω =
N⋃
i=1

Si

Figure 1: Examples of SV splitting into CVs for second, third and fourth order

If we fix a given approximation order k, every spectral volume Si is then partitioned
into m = k(k + 1)/2 subcells, called control volume (CV’s), i.e.

Si =
m⋃
j=1

Cij

If q denotes a conservative variable of Q, the average value of q over a control volume is
then defined as:

qij(t) =

∫
Cij
q(x, y, t)dxdy

Vij
, j = 1..m, i = 1..N (2)

Let us consider known all the average values over a control volume Cij in a given spectral
volume Si, we can build a polynomial pi(x, y) which is a kth order polynomial approxi-
mation to the state variable, i.e.:

pi(x, y) = q(x, y) +O(hk), (x, y) ∈ Si, i = 1..N (3)

This reconstruction can be defined by the analytical resolution of:∫
Cij
pi(x, y)dxdy

Vij
= qij(t), j = 1..m (4)

The polynomial approximation can be expressed as:

pi(x, y) =
m∑
j=1

Lj(x, y)qij
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where Lj are the shape functions, i.e. :∫
Cij
Ll(x, y)dxdy

Vij
= δjl (5)

Such functions can be established analytically for a given partition of Si. The shape
functions for the fourth order SV scheme with Wang’s partition is represented on figure
2.

Figure 2: Shape functions for fourth order SV with Wang’s partition

The high order reconstruction is then used to update average variables on CV. Inte-
gration of equation 1 on a control volume CV gives:

dQij

dt
+

1

Vij

K∑
r=1

∫
Ar

(f · n)dA = 0 (6)

where K is the number of faces in Cij and Ar the rth face. The integration on each face
can be performed whith a kth order accurate Gauss quadratic formula, i.e. :

∫
Ar

(f · n)dA =
J∑
q=1

wrqf(Q(xrq, yrq)) · nrAr +O(Arh
k) (7)

J = int((k + 1)/2) is the number of quadrature points per face, wrq are the Gauss
quadrature weights and (xrq, yrq) are the coordinates of Gauss points. Therefore, the
following semi-discrete equation is obtained:

dQij

dt
+

1

Vij

K∑
r=1

J∑
q=1

wrqf(Q(xrq, yrq)) · nrAr = 0 (8)

Finally, the resolution is achieved using a usual time integration method.
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2.1 Spectral volumes partitions

The subdivision of a spectral volume Si in different controle volumes Cij is an essential
step for the SVM scheme. For example, some geometric partitions can lead to degener-
ated systems and thus should be excluded. The splitting procedure must conserve the
existing symmetries in a triangle, use straight edges and consider convex control volumes
CVs. Fig. 3 shows different geometric partitions of a spectral volume SV for different
desired orders. While the second order splitting definition is unique, the higher order
partitions introduce some geometric parameters. The third order partitions is defined by
two parameters: α = AD

AB
and β = AF

AA1
. The fourth order partitions have four degrees of

freedom: α = AD
AB

, β = AG
AR

, γ = OR
AR

and δ = AL
AR

. The accuracy and stability of a given
spectral volume scheme depends on the choice of these geometric parameters (Abeele at
al.5).
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Figure 3: Geometric splitting definitions for the second, third and fourth order partitions

Table 1 sums up the different implemented and tested partitions with their geometric
parameters.

Partition Order α β δ γ

SVM2 2 - - - -
SVM3W 3 1/4 1/3 - -
SVM3K 3 91/1000 18/100 - -
SVM3K2 3 0.1093621117 0.1730022492 - -
SVM4W 4 1/15 2/15 2/15 1/15
SVM4K 4 78/1000 104/1000 52/1000 351/1000
SVM4K2 4 0.0326228301 0.042508082 0.0504398911 0.1562524902

Table 1: Geometric parameters for the different SVM partitions

The SVMW splittings were proposed by Wang et al. and they were designed by
minimizing the Lebesgue constant over the SV. Whereas the minimization of this constant
provides a good assessment of the quality of the SVM splitting, different observations
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show that it is not a sufficient condition for the stability of the scheme. Thus, Abeele5,6

proposed other geometric splittings noted as SVMK and SVMK2.

2.2 Spectral volume method assets

The spectral volume method uses a compact stencil which is a great advantage com-
pared to other high order reconstructions. The latter methods are often based on projec-
tions and gradients evaluations on a quite large region of neighboring cells, which is rapidly
prohibitive in terms of computational ressources (memory, CPU time) and can lead to
accuracy deterioration, for example with stretched unstructured cells or near boundaries.

The SVM geometric splitting is designed and optimised in a spectral way to mini-
mize internal reconstruction oscillations known as Runge phenomena (Fig.4). The recon-
structed field is continuous over the entire SV, therefore internal faces are not Riemann
problems, which reduces the flux computation cost and contains the problem of data lim-
itation to the SVs faces. The other interesting aspect of the SVM is the fact that the

Figure 4: Runge phenomenon

splitting reconstruction is homothetic: no new metric terms need be kept in memory. The
interpolation on Gauss points for fluxes computation is directly inferred from a weighting
of CV states with constant and unique coefficients for the whole domain.

Lastly, while the usual finite-volume and finite-difference methods depend strongly on
the grid quality and density, the SVM reconstruction remains exact (at a given order) on
arbitrarily shaped triangles.

3 Numerical experiments

To assess the performance of the SVM method, different test cases were computed with
Typhon7, an unstructured open-source code. The numerical experiments were chosen to
cover a large set of flows configurations, from continuous quasi-incompressible problems,
to shock wave propagations and mixing flows. Time integration is performed with a third
order TVD Runge-Kutta scheme and SVM results are compared to results provided by
usual schemes such as MUSCL.
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3.1 Vortex evolution problem

The first test case is a simple steady vortex evolution governed by the equation:

∂p

∂t
= ρ

vθ
2

r
(9)

with initial conditions set to :

p = 105 − 1.161 · 302

2
· exp

(
1− r2

4

)

An overview of the grids obtained after the SVM splitting procedure are presented
on figure 5. The meshes were designed to have the same total number of CVs. The
third-order TVD Runge-Kutta scheme was used for time integration.

Figure 5: Controle volumes for the second, third and fourth order SV schemes

Figure 6: Pressure profiles at different times (t=0 in black, t=2 in green, t=10 in red): SVM2 (left),
SVM3K (middle) et SVM4W (right)

Figure 6 shows pressure profiles across a line passing through the vortex center at
t = 0, t = 2 and t = 10 for different SVM orders. The second order simulation produces a
significant damping while the intensity in the vortex center is better conserved with the
third order. With the fourth order, the peak of pressure is well resolved and preserved
even with very long time simulations.
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In order to assess the performance of the high-order SVM, the same test case has been
performed on three different grids with the same number of SVs, using the usual MUSCL
method and the fourth SVM scheme. Contours of pressure are shown on the figure 7. We
can notice that even with the coarsest grid, composed of (10× 10× 2) SV (i.e. 2000 CV
for SVM4), the solution provided by the SVM scheme is more accurate than the MUSCL
solution on the finest mesh (12800 CV).

(a)

(b)

Figure 7: Pressure contours at t = 1s for different grids: 10 × 10 × 2 (left), 40 × 40 × 2 (middle) and
80× 80× 2 (right). (a) : MUSCL (b) : SVM4.

Another interesting aspect of SVM simulations is the reduction in CPU time per cycle
compared to a classic MUSCL method using the same number of control volumes (50%
for 2nd order, 32%to35% for 3rd order and 22%to25% for 4th order). The CPU savings
are due to the absence of gradient evaluation for inviscid fluxes and the continuity of
state variables through internal faces. This latter fact reduces the limitation problems
and several cases can be computed without any limitation procedure.
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3.2 Convected Vortex

In this test case, we consider the same vortex definition as in Eq. 9. However, the
vortex is not steady in the domain center but convected with a speed of Vconv = 20 on a
domain of [10×10]. The boundary conditions are set to periodic in the x and y directions.
No limiters were employed for the SVM simulations. For the following comparisons, the
velocity profiles are considered along a horizontal line passing through the vortex center
at t = 1: the vortex crosses the whole domain twice from left to right.

Figure 8: Overview of numerical damping of a convected vortex using MUSCL-Minmod scheme

Simulation with the classic MUSCL method are presented on figures 8 and 9 using the
minmod and the Van Albada limiters. The results show the solution sensitivity to the
limitation procedure. While the theoretical maximum transverse velocity is Vymax = 30,
Vymax ∼ 10 and Vymax ∼ 15 are respectively obtained for the minmod and the Van Albada
simulations, which proves that this test case is very sensitive to numerical dissipation.
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Figure 9: Comparison of velocity profiles from MUSCL simulations with the theoretical solution (black):
Minmod limiter (red) and Van Albada limiter (green).

With the SVM schemes, the velocity profile is better preserved when the order is
increased (Fig.10) . Thus, Vymax ∼ 15, Vymax ∼ 25 and Vymax ∼ 30 are obtained for the
second, third and fourth order respectively.

Figure 10: Comparison of velocity profiles along a line through the vortex center at t = 1 (left) and
kinetic energy time evolution (right)
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3.3 Simple Mach reflection

This case deals with a classic problem of shock reflection with a Mach number Ms = 1.7
and a wedge angle of θ = 25◦. The numerical results were obtained on a domain of
[25 × 16.5] on the x − y plane with the apex of the wedge placed at x = 4.69. The
upstream shock conditions are ambient conditions, with ρa = 1.225, pa = 1.01325 · 105

and u = 0. The Riemann solver used is HLLC. All simulations were carried with the
TVD RK-3 time integration scheme and a CFL = 0.5.

Figure 11: Density contours for SVM2, SVM3 and SVM4 simulations

Different experimental and computational results describe the solution to this problem.
They show three shocks meeting at the triple point, namely, the incident shock, the
reflected shock and the Mach stem. From the triple point emerges a slip surface that
joins the wedge at a sharp angle. Different authors point out that the delicate feature
for numerical simulations is the capture of this slip surface across which discontinuities in
density and velocity occur (Toro8).

Density contours provided by different SVM simulations are shown on figure 11 . The
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initial grid is an unstructured mesh with 42208 SVs: i.e. 126624 CVs for SVM2, 253248
CVs for SVM3 and 422080 CVs for SVM4. All SVM simulations for this case were carried
with no limitation procedure.

It can be notices that the thicknesses of incident and reflected shocks are larger in the
SVM2 solution, while it is well resolved for the SVM3 and SVM4. The contours around
the slip surface are better captured when the order increases and the SVM4 solution
clearly displays the development of instabilities near the wedge.

Figure 12: Density contours: MUSCL, 800.000 CV (left) and SVM4, 422.080 CV (right)

To prove that the capture of these features and the better resolution of the flow are
due to the increasing order, other simulations have been undertaken using the MUSCL
scheme.

Figure 13: Entropy contours at slip surface: MUSCL, 800.000 CV (left) and SVM4, 422.080 CV (right)

The results obtained with the SVM4 scheme were compared to those provided by the
MUSCL method on a structured cartesian finer grid (Fig.12). While the unstructured grid
for SVM4 contains 422.080 CVs, the grid used for MUSCL simulation is a structured mesh
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with twice the number of CVs, i.e. 800.000 CVs. Yet, the shocks thicknesses obtained are
large and no improvement of the slip surface resolution is observed when increasing the
number of CV with MUSCL method. Figure 13 clearly shows that the SVM scheme better
captured the slip surface: Kelvin-Helmholtz instabilities can be noticed on the shear line.
These observations suggest that the better resolution of the problem is achieved by the
order increase rather than the mesh refinement.

3.4 Double Periodic Shear Layer

Finally, the problem of a double periodic shear layer is considered over a domain
[0, 1]× [0, 1]. The velocity is defined as shown on figure (Fig.14) with a smooth transition
between layers and a 5% vertical pertubation.

Figure 14: Case configuration and velocity initialisation

Initial density profile is defined by :

ρ = 1 +
3

2

(
1 + tanh(30 · (1

4
− |Y − 1

2
|)
)

Boundary conditions are set to be periodic in both x and y directions.
Figure 15 shows the time evolution of density contours for the third-order SVM scheme

simulation over four adjacent domains. Though the field undergoes a single excitation,
instabilities of different wavelengths form over time.

This test case is very sensitive to numerical schemes diffusion (Drikakis9), and some
simple creterion could be used as a measure of the error in the computation such as the
decay of kinetic energy. Figure 16 shows that the SVM schemes better conserve the total
kinetic energy while the MUSCL simulations appear very dissipative.
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Figure 15: Density Contours

Figure 16: Double periodic shear layer: comparison of time evolution of the kinetic energy
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4 Conclusion

In this study, analysis and applications of the Spectral Volume Method were presented.
This high-order reconstruction is particularly interesting due to its compact support. Us-
ing splitted control volumes with flux evaluation remains quite close to the classic Finite-
Volume method which keeps the SVM implementation in existing codes relatively easy.

The results are up to expectations with a significant increase in occuracy and a re-
duction in CPU time compared to a MUSCL method with the same number of elements
(50% for 2nd order, 32%to35% for 3rd order and 22%to25% for 4th order). The CPU gains
are due to the absence of gradient evaluation for inviscid fluxes and the continuity of
status variables through internal faces. This property reduces the limitation problems
and several cases can be computed with no limitation procedure.

For all previously reported assets, the Spectral Volume Method arises as a promising
high-order reconstruction device for both academic and industrial studies especially for
complex applications which require great accuracy with computational ressources savings.

Investigations in the exentension of this method to viscous flows are currently under
study. Different original choices and their implementation will be discussed in the future.
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