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1 Introduction

Atmospheric pressure Inductively Coupled Plasma (ICP) torches are long lived
and stable plasma sources which are useful for a wide range of scientific and
industrial applications. Among these we can cite applications such as waste
treatment, monitoring of pollutants [1], testing of ablative and heat-resistant
materials in the scope of atmospheric entry studies [2, 3], or spectroscopy ap-
plications [4, 5].
Such applications require a precise knowledge of the physical-chemical properties
of these plasmas, and therefore a great number of complementary investigations
are carried out regarding the experimental characterization and the numerical
modelling of such plasma sources. This not only allows gaining a proper insight
of the importance of the different physical-chemical processes in such plasmas,
but more importantly it allows gaining a predictive insight on such plasmas.
Plasma torch modeling represents a challenging complex multiphysics prob-
lem. Hydrodynamics, electromagnetics and radiative transfer are the three ba-
sic ingredients which are involved in the mathematical model where numerical
schemes have to be specifically designed to take the strong coupling into ac-
count. The goal of the present contribution is to show with a simple example
that the choice of the numerical scheme has a critical impact in the ICP sim-
ulation: roughly speaking we can obtain two definitely different solutions for
the same problem using two different solvers which brings into question a blind
usage of numerical solvers proposed (for example) in commercial packages.
In this work, we consider the ICP-T64 plasmas torch [6] operated in the Labora-
toire Arc Electrique et Plasmas Thermiques. This classical ICP torch is able to
work with different kinds of plasma gas (air, argon, CO2, N2 and gas mixtures).
This inductively coupled plasma system operates at a frequency of 64 MHz. A
seven-turn induction coil, cooled by air, is used to ignite and sustain the plas-
mas of different gas mixtures. The plasma is generated through the induction
coil by a radio frequency (RF) of 64 MHz delivering a power up to 3 kW. The
plasma is confined within a 28 mm quartz tube. The plasma gas is injected at
a fixed rate of more than 5 L/min.
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2 Mathematical modeling and
numerical method

Plasma torch simulation couples three kinds of physical phenomena: Fluid me-
chanics, electromagnetism and radiation transfer leading to a complex and intri-
cate multiphysics problem. The Navier-Stokes equations govern the fluid motion
while the Maxwell system describes the electromagnetic fields evolution. Strong
couplings arise between the two systems. Indeed the plasma conductivity de-
pends on the plasma temperature while the heating of the fluid is driven by the
Joule heating source induced by the electric field and by the radiation transfer.
In addition, the fluid motion (gas and plasma) is driven by the Lorentz force.

2.1 The modeling

In order to take advantage of axisymmetric geometries we use cylindrical coordi-
nates (r, θ, z) with θ–invariance, and make the following simplifying assumptions
(see Fig. 1-left):

i) Viscosity and thermal diffusion of the gas are neglected,

ii) Electric and magnetic fields are time-harmonic complex functions of an-
gluar frequency ω,

iii) Displacement currents are neglected.

The symmetry implies moreover Er = Ez = 0 and Hθ = 0. This implies that
the Lorentz force has the form FL = (fr, 0, fz). Let us mention that we do not
consider the viscosity and the thermal conductivity in our model in order to
study the artificial diffusion effect deriving for the numerical schemes.
The domain is constituted of a gas and several copper inductors I1, . . . , IK
powered by a voltage supply Vk, k = 1, . . . ,K (See Fig. 1: right) prescribed on
a cross–section S, located at θ = 0 on the inductors.
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Figure 1: A simple plasma torch: geometrical conventions (left). Voltage on surface
S in the inductor (right).
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Assembling all these considerations, eddy current equations result in the fol-
lowing partial differential equation satisfied by the azimuthal component of the
electric field:

− ∂

∂r

(1
r

∂

∂r
(rEθ)

)
− ∂2Eθ

∂z2
+ iωσµ0Eθ =

iωµ0σ

2πr

∑
k

Vk 1Ik(x), (1)

where 1Ik(x) = 1 if x ∈ Ik and zero elsewhere, µ0 is the magnetic permeability
of the vacuum and σ is the electric conductivity. It is noteworthy that this
equation readily implies the symmetry condition Eθ = 0 on axis r = 0, but this
condition is not automatically satisfied by numerical schemes and must then by
enforced. As far as conditions at the infinity are concerned, Eθ must satisfy the
condition

Eθ(r, z) = O
( 1

(r2 + z2)
1
2

)
r2 + z2 →∞.

However, in our computations, this conditions is approximated by choosing a
large domain that contains the conductors and prescribing on its boundary the
condition

∂Eθ
∂r

= 0.

In the gas, the conductivity σ = σ(T ) depends on the temperature according to
the following law:

σ(T ) =

{
0 if T < 5000,
T−5000

10 if T > 5000.
(2)

Finally, using the Faraday equation

iωµ0H +∇×E = 0,

where H is the magnetic field, we obtain

Hr = − i

µ0ω

∂Eθ
∂z

, Hz =
i

µ0ωr

∂

∂r
(rEθ). (3)

For the fluid flow problem, we introduce compressible Euler equations in cylin-
drical coordinates with θ–invariance:

∂

∂t
(rρ) +

∂

∂r
(rρur) +

∂

∂z
(rρuz) = 0, (4)

∂

∂t
(rρur) +

∂

∂r
(rρu2

r + rP ) +
∂

∂z
(rρuruz) = ρu2

θ + P + fr, (5)

∂

∂t
(rρuz) +

∂

∂r
(rρuzur) +

∂

∂z
(rρu2

z + rP ) = fz, (6)

∂

∂t
(rρuθ) +

∂

∂r
(rρuθur) +

∂

∂z
(rρuθuz) = −ρuθur, (7)

∂

∂t
(rE) +

∂

∂r
(rur(E + P )) +

∂

∂z
(ruz(E + P )) = sjou + srad, (8)

where ρ, u = (ur, uθ, uz) and E are the gas density, the velocity, the total energy
while the pressure P , the internal energy e and temperature T satisfy

E = ρ e+
1
2
ρ|u|2, P = (γ − 1)ρ e, e = CvT.
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Moreover, the Lorentz-Laplace force (fr, 0, fz) and the Joule effect sjou are given
by

FL =
µσ

2ω
Re(EθHi), sjou =

1
2
rσ|E|2, (9)

where E is the conjugate function of E, |E| the modulus and Re the real part
of a complex number. Note that we do not assume uθ = 0 since we intend to
take the swirl flow into account.
Finally, the radiation phenomenon is included in the model using the net emis-
sion approximation [9]. In the present case we use an explicit representation of
the radiative emission in function of T given by

srad =


0 if T < 3000,
−10.55 exp(T/420) if 3000 ≤ T ≤ 10000,
−4.6 1010 exp(T/7143) if T > 10000.

To compute numerical approximation, we use, on the one hand, a P1 finite
element method for electric and magnetic field, and on the other hand we have
designed a specific finite volume method coupling with a multislope MUSCL
second order technique for the Euler system [7, 8]. The numerical method is
detailed in the following sections.

2.2 Geometrical ingredients

In the coordinate system (r, z) we consider a rectangular domain Ω = [0, 0.1]×
[0, 0.15] with four circular cross-section inductors. The discretization is based on
an unstructured mesh T made of triangles Ci with barycenter Bi, i ∈ Eel where
Eel is mesh element index set (see figure 2). We denote by j ∈ ν(i) the index
set of neighbour triangles Cj which share a common edge eij with Ci and nij
stands for the unit normal vector pointing from Ci toward Cj . Let furthermore

Figure 2: Geometrical ingredients: Cell notation.

Pk, k ∈ End stand for the set of mesh nodes and End,0 ⊂ End the subset of labels
of nodes on the axis r = 0. Finally, δ(i) denotes the index set of the nodes
belonging to cell Ci.

2.3 The electric field

Let consider the finite element discrete space

Vh = {φ ∈ C0(Ω; C), φ|Ci
∈ P1, φ(0, z) = 0}.
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We seek and approximation

Eh =
∑

k∈End\End,0

Ekφk ∈ Vh

of Eθ such that for any φ ∈ Vh, using rφ as a test function and the boundary
condition, we have the weak formulation:∫

Ω

1
r

∂

∂r
(rEh)

∂

∂r
(rφ) dr dz +

∫
Ω

∂Eh
∂z

∂φ

∂z
r dr dz

+
∫

Ω

iωσµEhφr dr dz =
iωσ

2π

∑
k

Vk

∫
Ik

φdr dz.

We then construct a constant piecewise approximation of the magnetic field and
electric field on each cells Cj with

Hj =
i

µω

∑
k∈δ(j)

Ek(∇φk)|Cj
, Ej =

1
3

∑
k∈δ(j)

Ek

and a constant piecewise approximation of the Joule heating term sjou,h and
the Lorentz force Fh such that on each cell Cj :

sjou,j =
σ(Tj)

2
|Ei|2, Fi =

µσ(Ti)
2ω

Re
(
EjHj

)
.

2.4 The fluid flow

For any function v given on cell Ci and function f given on the edge eij , j ∈ ν(i),
we define the weighted mean values:

vi ≈
1
|Ci|r

∫
Ci

vr dr dz, |Ci|r =
∫
Ci

r dr dz,

fij ≈
1
|eij |r

∫
eij

fr ds, |eij |r =
∫
eij

r ds,

where the weight r deriving from the cylindrical coordinates has to be taken into
account in the mean expressions: vi is an approximation of v at the barycenter
Bi while fij is an approximation of f at the edge midpoint Mij (see figure (2)).
The first-order finite volume scheme writes:

|Ci|rUn+1
i = |Ci|rUni −∆t

∑
j∈ν(i)

|eij |rF(Uni , U
n
j ,nij) + ∆t |Ci|G(Uni ), (10)

where Uni = (ρni , ρ
n
i u

n
i ,E

n
i ) is an approximation of the weighted mean values

of the conservative variables while F(Uni , U
n
j ,nij) stands for the numerical flux

across the edge eij in direction nij .
The source term G(Uni ) represents the geometrical contribution due to the cylin-
drical coordinates. Note that |Ci| the non-weighted measure of cell Ci. A partic-
ular challenging problem to design numerical schemes in cylindrical coordinates
is the well-balanced issue due to the presence of geometrical terms (see [8] for a
detailed study on the subject).
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Second order scheme is achieved substituting the first-order approximations Uni
and Unj with better accurate estimations Unij and U ji on both sides of eij in
the flux evaluation. We refer to [7] and [8] for a complete description of the
schemes.
A wide variety of numerical fluxes is available in the literature (see [12] for a
review on numerical fluxes for the Euler system). The goal of the paper is to
show that the choice of the numerical flux is of crucial importance and numer-
ical simulations can provide very different results due to an inadequate flux.
In the paper we shall consider two popular numerical fluxes: the Rusanov [11]
and the HLLC flux [13]. The first one is very simple to implement, no entropy
fixing is required but it is responsible of a large amount of numerical viscosity in
the shock vicinity. The second one is also simple to implement and it provides
entropic solution approximation. It has been designed to preserve the contact
discontinuity and reduce the numerical viscosity effect. Second order technique
helps to reduce the numerical diffusion but can not eliminate the intrinsic de-
faults of the fluxes.

2.5 The couplings

Radiation emission, joule effect and Lorentz-Laplace force are integrated with
the classical second-order Strang splitting method. We solve ordinary differ-
ential equations both for the impulsion and the total energy source terms[12].
The whole algorithm is the following, let Enh , Bnh and Unh be approximations of
the electric, magnetic field and the conservative variables of the Euler system
respectively.

– We determine the electric conductivity σ(Tnh ) and compute the electric
field En+1

n .

– We deduce the magnetic field Hn+1
h , the Lorentz-Laplace force Fn+1/2

h and
the Joule effect sn+1/2

jou,h .

– We evaluate the radiation emission s
n+1/2
rad,h = srad(Tnh ).

– We perform a full time step of the Euler system without the source terms
(but with the geometrical terms) where we compute Un+1/2

i from Uni using
(10).

– We add the right-hand side contribution with a simple Forward Euler
algorithm in time for each cell Ci:

ρn+1
i = ρ

n+1/2
i ,

ρn+1
i un+1

i = ρni u
n
i + ∆tFni ,

En+1
i = E

n+1/2
i + ∆t(sn+1/2

jou,i − s
n+1/2
rad,i ).

We recover the second-order Strang splitting if we perform the first half-step
with the right-hand side term using the initial condition.

3 Numerical simulations

Our objective is to show with a simple example that the choice of the numerical
flux to solve the same problem can provide two completely different solutions.
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We want to emphasize that in the case of complex multiphysics problems, nu-
merical schemes should be used with care to provide a physically representative
solution. In the present study, we consider the Rusanov and the HCCL nu-
merical solver and their impacts on the approximation whereas all the other
numerical schemes (finite elements for the electric and magnetic field, Strang
splitting for the source terms) are the same: the different behaviour have to be
attributed to the Riemann solvers.
To perform the numerical tests, we consider a simple torch in axisymmetric ge-
ometry depicted in figure 3 where we use a Delaunay mesh with 22096 elements
and 10985 nodes.
The initial condition correspond to a gas at rest with a uniform pressure Pini =
105 Pa. The red area is the ignited plasma where we set a uniform density

Figure 3: Mesh and boundary conditions.

ρp = 0.003 corresponding to a temperature of Tp = 12 000K whereas the blue
area the gas with density ρ2 = 1.2 which corresponds to the room temperature
T2 = 300K.
We use reflection conditions for the two vertical sides and the bottom of the
rectangular while we use a transmission condition for the top side of the domain
while we set the homogeneous Neumann condition on whole boundary for the
electric field.

3.1 First run: Vk = 0

In the first test, we assume that there is no current in the inductors and the
radiation emission is set to zero to avoid the plasma cooling. We then face
to a classical Riemann problem at the interface between the hot and the cold
gas. Since we do not have any thermal diffusion and the pressure is uniform,
the solution corresponds to the initial state where the hot and cold areas are
preserved.
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Figure 4: Temperature of the plasma torch after 50µs with a 0V voltage: Rusanov
(left) and HLLC (right). The contact discontinuity is well-preserved with the HLLC
numerical flux while the too dissipated Rusanov flux rapidly makes uniform the tem-
perature.

Figure 4 shows the temperature distribution of the torch after about 50µs.
Clearly the Rusanov scheme presents an important numerical diffusion while the
HLLC succeeds in preserving the contact discontinuity. The Rusanov numerical
flux contains, by essence, a diffusion term for stability reason. In the present
simulation, the density discontinuity is very important (0.03 in the hot area and
1.2 in the cold area) and a small transfer of matter into the lower density zone
has a great impact on the temperature variation (remember that T acts as 1

ρ ).
In few µs, the diffusion is responsible of a density doubling in the vicinity of the
contact discontinuity which results in a temperature drop.
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Figure 5: Temperature cut of the plasma torch with a 0V voltage.

We print out in figure 5 a cut of the temperature at z = 0.05 on the interval
[0, 0.02] (see figure 3 for the cut location) at the initial time and times t = 18µs,
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t = 46µs, t = 191µs. We observe that the HLLC numerical flux allows a
nice contact discontinuity preservation while the Rusanov flux switches off the
plasma since we reach a temperature lower that 5000K (corresponding to a null
conductivity) after about 200µs.

3.2 Second run: Vk = 1500 V

We now impose a voltage of 1500V in the four inductors to create a electric
field which induces eddy current inside the plasma while the radiation emission
is activated to evacuate the energy. Indeed, without the radiation process,
the plasma temperature always increases and no steady-state solution can be
achieved.
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0

0.0375

0.075

0.112

0.15

300 6150 12000
     

0 0.025 0.05 0.075 0.1
0

0.0375

0.075

0.112

0.15

300 6.15e+03 1.2e+04
    

Figure 6: Temperature of the plasma torch after 100µs with a 1500V voltage: Ru-
sanov (left) and HLLC (right). In the HLLC case, we obtain a steady-state situation
which corresponds to balance between the radiation emission and the Joule effect while
the Rusanov flux dissipate too much and the plasma will switch off.

Figure 6 shows the temperature distribution of the torch after about 100µs.
With the HLLC numerical flux, the temperature map reaches an equilibrium
corresponding to balance between the radiation emission and the Joule effect.
On the contrary, the Rusanov scheme has too much diffused the density lead-
ing to a dramatic reduction of the internal energy to reach below the ignition
temperature: the plasma switches off after about 200µs.
We draw in figure 7 several cuts of the plasma torch at time t = 18µs, t = 46µs
and t = 191µs. We observe the convergence to the steady-state solution in the
HLLC case while the Rusanov flux provides an other solution corresponding to
a uniform cold gas. The Joule heating is not enough to compensate the viscosity
effect of the numerical flux.

3.3 Third run: Vk = 2000 V

In the last test, we increase the voltage up to 2000V in the four inductors to ob-
tain a stronger heating of the plasma. We reach to a new steady-state situation
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Figure 7: Temperature cut of the plasma torch with a 1500V voltage.

with the HLLC numerical flux similar to the previous case where the tempera-
tures are slightly higher. On the contrary, the Rusanov flux provides this time a
complete different behaviour with a important growth of the temperature. The
mechanism is the following: the gas is strongly heating in a small layer at the
periphery of the plasma. Due to the large diffusion of the scheme, matter in
cold zone flows into the hot zone in the vicinity of the contact discontinuity but,
this time, the cooling is compensated by the Joule effect. Moreover, the initial
cold zone warms up until it reach the ignition temperature. Consequently the
plasma zone increases (cold area turns to be hot area) and the torch rapidly
inflates till it touches the inductors.
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Figure 8: Temperature of the plasma torch after 400µs with a 2000V voltage: Ru-
sanov (left) and HLLC (right). The HLLC flux provides a new steady-state solution
while the torch inflates with the Rusanov numerical flux.

We draw in figure 9 several temperature cuts at t = 284µs, t = 377µs and
t = 470µs. We clearly observe the steady-state situation with the HLLC scheme
whereas the torch inflation with a mean temperature of 7800K is obtained.
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When the torch gets closer to the inductor, a huge current Joule effect is gen-
erated and we observe temperatures up to 50 000K around the inductors.
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Figure 9: Temperature cut of the plasma torch with a Voltage of 2000V .

4 Conclusion

To perform plasma torch numerical simulation, we have to face a complex mul-
tiphysic problem where both finite element and finite volume methods are em-
ployed. We show with simple examples the impact of the numerical scheme
choice where we have detailed three representative situations. It comes that
due to the numerical viscosity, simulations carried out considering the Rusanov
or HLLC numerical fluxes provide completly different numerical solutions for
the exactly the same physical problem. A blind usage of numerical solver can
lead to non relevant physical solutions.
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2001.

[2] G. Herdrich, M. Auweter-Kurtz, P. Endlich, Mars Entry Simulation using
the Inductively Heated Plasma Generator IPG4, Journal of Spacecrafts and
Rockets, Vol. 40, No. 5, (2003) 690–694.

[3] A.F. Kolesnikov et al., Study of quarts surface catalycity in dissociated
carbon dioxide subsonic flows, Journal of Spacecraft and Rockets, Vol. 37,
No. 5, (2000) 573–579.

[4] D. Vacher, M. Lino da Silva, P. André, G. Faure, and M. Dudeck, Raadi-
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from an equilibrium CO2-N2 plasma in the [250-800nm] spectral region:
I,II Experiment Plasma Sources Sci. Technol. 17 8p 035012 (2008).

[11] V.V. Rusanov, Calculation of interaction of non-steady shock waves with
obstacles, J. Comput. Math. Phys. USSR, Vol. 1 (1961) 151–179.

[12] E.F. Toro, Riemann solvers and numerical methods for fluid dynamics. A
practical introduction, Springer-Verlag, Berlin, 1997.

[13] E.F. Toro, M. Spruce, W. Speares, Restoration of the contact surface in
HLL-Riemann Solver, Shock Waves Vol. 4 (1994) 25–34.

12


