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Abstract. A new representation of two-dimensional divergence-free elements for incom-
pressible flow simulations on adaptive Cartesian grids is derived. A rotated and mirrored
coordinate system allows for a straightforward derivation of the divergence-free elements
as well as a performance gain for the evaluation of the spatial operators due to a reduced
number of computational operations. Several benchmark simulations have been performed
in order to validate the derivation and implementation of the new type of elements in the
PDE framework Peano.
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1 INTRODUCTION

Usual finite element discretisations for the incompressible Navier-Stokes equations lack
the property of being (weakly) divergence-free. Therefore, a lot of (complicated, mathe-
matical) workarounds are necessary and applied in order to overcome this drawback.

A different approach consists in using finite elements that are divergence-free by con-
struction1. One important advantage of such divergence-free elements is the resulting
skew-symmetric convection operator (at least up to outflow boundary contributions,
cf. [3]) which allows to conserve both energy and momentum simultaneously. Hence,
no instability can appear in the corresponding system of ordinary differential equations
(ODE) which is important for turbulent simulations, e.g., where developers sometimes
encounter “blow-ups” for non-divergence-free discretisations due to artificially introduced
energy in the system. The derivation of such divergence-free elements typically is cum-
bersome and results in a coupling of the individual velocity components of the discrete
solution.

In this paper, we present a straightforward way of constructing two-dimensional diver-
gence-free elements. The derivation of these elements, which we call enhanced divergence-
free elements, is based on [1] which in turn has roots in considerations for finite volume
discretisations ([8, 9]). The advantage of the new derivation and representation in the
proposed rotated system in this paper is a non-cumbersome construction of the elements.
Furthermore, these elements are not coupled any more which results in a considerable
reduction of necessary operations for evaluating spatial operators, in particular for the
convection. In addition, the enhanced divergence-free elements allow for a straightforward
usage in arbitrarily adaptive Cartesian grids.

The structure of this paper is as follows. In Section 2, we briefly describe our framework
Peano used for simulations of partial differential equations (PDE). The structure of the
enhanced divergence-free elements is derived in Section 3. We present numerical results
for several benchmark scenarios in Section 4 before closing this discussion and giving a
short outlook in Section 5.

2 THE PDE FRAMEWORK PEANO

Modern PDE simulations in general and CFD solvers in particular are still facing
capital challenges concerning performance and re-usability. Therefore, we developed the
C++ PDE framework Peano in a strictly object-oriented manner including successful
solution approaches of Software Engineering such as automated tests and design patterns
(see [5, 10]).

Peano works on adaptive Cartesian grids via spacetrees, space-filling curves and stack
data structures. The grid construction starts with a hypercube root cell containing the
complete computational domain and then, similar to the well-known octrees, subdivides
the root in a recursive manner by splitting up each cell into three parts along each coor-

1Gresho and Sani present a nice historical overview on divergence-free discretisations in [3], p. 609 ff.
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dinate axis. Hence, adaptive grids on complicated geometries can be generated automat-
ically, easily, and fast.

In order to serialise the underlying spacetree for a run over the grid, a certain traversal
order is necessary. The so called space-filling curves (cf. [6]) offer advantageous features
concerning an efficient usage of caches. These self-similar recursively defined curves fit
perfectly to our construction of the spacetree and grid. For accessing nodal data, we
developed a very cache-efficient mechanism using simple stack data structures (see [4])
that allow push and pop operations only to access data.

Using the stacks in combination with the Peano curve assures temporal and spatial
locality of data access. These two effects lead to a very efficient cache usage with cache-
hit rates of 98 – 99%, independent of the dimension, the architecture or the concrete type
of application in use. Furthermore, the strictly cell-wise operator evaluation, necessary for
using space filling curves together with stacks, avoids the storage of any neighbourhood
informations, in particular at boundaries between different refinement levels, and, thus,
leads to very low memory requirements.

Peano’s approach of adaptive Cartesian grids does neither depend on the concrete
PDE to be solved nor on the type of temporal or spatial discretisation (FD, FE, FV,
etc.). Therefore, Peano represents a general framework for different solvers, offering grid
generation, data handling, etc. Currently, several solvers exist, such as for the Poisson
equation, for heat equation simulations, for the continuity equation, and for the incom-
pressible Navier-Stokes equations.

3 DIVERGENCE-FREE ELEMENTS

In this section, we first set up the general context of the discretisation of the Navier-
Stokes equations in Peano. Then, we derive the divergence-free ansatz functions and list
selected properties of the spatial operators before closing the section with hints on the
additional enhanced degrees of freedom (DoF) on faces.

3.1 Navier-Stokes Equations

In order to approximate solutions for the incompressible Navier-Stokes Equations

∂u

∂t
− ν ∆u + (u · ∇) u +

1

ρ
∇p = g, (1)

∇ · u = 0, (2)

we apply a semi-implicit approach (Chorin projection method) in Peano for the results in
this paper. For a given spatial discretisation, the semi-discrete Navier-Stokes Equations
have the following generic form

Au̇h +Duh + C(uh)uh −MTph = f,

Muh = 0, (3)
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where uh is the approximation of the solution, A is the mass matrix, and D and C repre-
sent the discrete diffusion and convection operator. As in the continuous case, the discrete
divergence and gradient operators M and MT are transposed counterparts. Gauss-Seidel
iterations are currently used to compute the discrete pressure values ph as Lagrangian
multiplier values from the pressure Poisson equation (PPE); current work is on the PPE
multigrid solver using Peano’s adaptive grid hierarchy.

Note that for a standard discretisation, the approximate solution uh is not divergence-
free on all points within a given cell (which can easily be shown for bilinear ansatz func-
tions, using the coordinate x = (h/3, h/3), e.g.).

3.2 Derivation of the Ansatz Functions

The basic idea of the divergence-free ansatz functions is to create functions for x and y
components of the velocities that possess— individually—constant divergence on subparts
of their support while having a simple structure. In a second step, the sum of all those
divergence contributions on a Cartesian cell, which is still constant, will be shown to be
equal to zero.

In order to derive the ansatz functions, we will use the following notation: Entities in
the standard Cartesian coordinate system will hold an additional superscript Cart while
those from the rotated and mirrored one (denoted 45 below) don’t get additional super-
scripts (see Fig. 1(a) for a definition of the two representations). For example, ϕx,Cart

i

denotes the ansatz functions on node i for direction x in the standard Cartesian system,
whereas ϕx

i represents the nodal base functions for the x-direction of the 45 system.
Lets assume that the subparts of the support of the ansatz functions for x and y in the

45 system are triangles on the squared grid cells defined as visualised in Fig. 1(b).

y

xy,Cart

x,Cart

(a)

2 3

0 1 0 1

32

(b)

Figure 1: (a) Coordinate system orientations for standard Cartesian (left) and 45 system (rotated and
mirrored, right). (b) Triangle definition for ∂xu (left) and ∂yv (right) to be constant.

The partial derivative ∂xu of u is constant (with the same value) on both triangles
if u is linear. In particular, ∂xu only depends on the values u0 and u3: ∂xu = u3 − u0

(ignoring a constant factor involving the mesh size). This holds for v in an analogue
manner: ∂yv = v1 − v2. Hence, the overall divergence sums up to a constant value,

∇ · u(x) = ∂xu(x) + ∂yv(x) = u3 − u0 + v1 − v2 = const , (4)
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and is equal to zero for all points x = (x, y)T if and only if the mass flux over the cell
boundary is equal to zero, which is garantueed by the Chorin projection method. Hence,
the resulting linear ansatz functions ϕx

i (x) and ϕy
i (x) are really divergence-free on all

points in a cell.
Figure 2 visualises ϕx

i and ϕy
i on their support of four Cartesian grid cells (of the type

of Fig. 1(b)). Using ϕx
i and ϕy

i to set up the approximate solution on N nodes with
corresponding coefficients ui and vi,

uh :=
N∑

i=1

(uiφ
x
i + viφ

y
i ) , (5)

φx
i :=

(
ϕx

i

0

)
, φy

i :=

(
0
ϕy

i

)
, (6)

shows the decoupling of the dimension components in φx
i and φy

i .
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Figure 2: Divergence-free ansatz functions ϕx
i (a) and ϕy

i (b) in the 45 coordinate system (cf. Fig. 1).
The two ansatz functions are linear and decoupled.

In order to check the structure of the ansatz functions in the standard rectangular
Cartesian coordinate system,

φx,Cart

i :=

(
ϕx,1,Cart

i

ϕx,2,Cart

i

)
, φy,Cart

i :=

(
ϕy,1,Cart

i

ϕy,2,Cart

i

)
, (7)
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we need to apply an orthogonal transformation matrix A45 :=
1√
2
·
(

1 1
1 −1

)
. Hence,

the representation of the solution (5) results in

uCart

h = A45 · uh =
N∑

i=1

A45 · (uiφ
x
i + viφ

y
i ) =

N∑
i=1

1√
2

(
ϕx

i ϕy
i

ϕx
i −ϕ

y
i

)
·
(
ui

vi

)

=
N∑

i=1

1√
2

(
ϕx

i ϕy
i

ϕx
i −ϕ

y
i

)
· A45 ·

(
uCart

i

vCart
i

)

=
N∑

i=1

1√
2

(
ϕx

i ϕy
i

ϕx
i −ϕ

y
i

)
· 1√

2

(
uCart

i + vCart
i

uCart
i − vCart

i

)

=
N∑

i=1

1

2

(
ϕx

i (uCart
i + vCart

i ) + ϕy
i (uCart

i − vCart
i )

ϕx
i (uCart

i + vCart
i )− ϕy

i (uCart
i − vCart

i )

)

=
N∑

i=1

(
uCart

i
1
2
(ϕx

i + ϕy
i ) + vCart

i
1
2
(ϕx

i − ϕ
y
i )

uCart
i

1
2
(ϕx

i − ϕ
y
i ) + vCart

i
1
2
(ϕx

i + ϕy
i )

)

=
N∑

i=1

(
ϕx,1,Cart

i ϕy,1,Cart

i

ϕx,2,Cart

i ϕy,2,Cart

i

)
·
(
uCart

i

vCart
i

)
=

N∑
i=1

(
uCart

i φx,Cart

i vCart

i φy,Cart

i

)
. (8)
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Figure 3: Divergence-free ansatz functions in the standard Cartesian coordinate system (see Fig. 1(a)):
(a) ϕx,1,Cart

i = ϕy,2,Cart

i = 1
2 (ϕx

i + ϕy
i ) and (b) ϕx,2,Cart

i = ϕy,1,Cart

i = 1
2 (ϕx

i − ϕy
i ).

We deduce from (8) that the Cartesian oriented ansatz functions have the form

φx,Cart

i =

(
ϕx,1,Cart

i

ϕx,2,Cart

i

)
=

(
1
2
(ϕx

i + ϕy
i )

1
2
(ϕx

i − ϕ
y
i )

)
(9)
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φy,Cart

i =

(
ϕy,1,Cart

i

ϕy,2,Cart

i

)
=

(
1
2
(ϕx

i − ϕ
y
i )

1
2
(ϕx

i + ϕy
i )

)
. (10)

The representation (9)–(10) is visualised in Fig. 3 and is identic to the one derived
in [1]. Note the coupling of both dimension components that appears in contrast to
the 45 system: Horizontal velocities now depend on contributions from the vertical base
functions and vice-versa.

3.3 Spatial Operators

In order to be able to implement the spatial discretisation in Peano, we need element
matrices for all spatial operators M,MT , D, and C in the new 45 system. The divergence
operator M is straightforward as it appeared already in (4). It is clear that the new 45
system results in a reduced number of operations (3 additions instead of 7) on one cell
compared to the standard Cartesian system. The same holds for the pressure gradient
evaluation via MT , used for the Gauß-Seidel iterations.

The diffusion operator D turns out to be the standard 5-point-stencil for each velocity
component on the Cartesian grid also in the new 45 system. This is no surprise as it has
the same form in the standard Cartesian coordinate system and, as a linear operator, is
invariant to the transformation A45.

The non-linear convection operator C, however, gets a considerably simpler represen-
tation in the new 45 system as no coupling between the different velocity components
exists. In fact, the number of floating-point operations to be performed on one cells drops
from 576 additions and 608 multiplications to 40 and 64, respectively, while keeping the
important skew-symmetry property C = −CT (cf. [1, 5]).

3.4 Enhanced Divergence-Free Elements

In order to be able to capture additional flow over edges of a discrete cell, we enhance
the divergence-free elements presented above by additional degrees of freedom ũi, ṽi on the
centre of the faces. Figure 4(a) shows the additional DoF in red on the centres a, b, c, and

2 3

0 1

d

a

cb

(a)

0 1

v0

v1

a

(b)

Figure 4: Additional DoF ũi, ṽi on cell faces: (a) locations and directions; (b) example representation of
ṽa (dashed red line) as hierarchical surplus with identic integral value as the parabola to approximate.
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d of the faces of a cell. Note that for horizontal faces, only vertical velocities (ṽa, ṽd) get
flux contributions, whereas horizontal velocity DoF (ũb, ũc) exist only on vertical edges.
We intreprete ũi, ṽi as hierarchical surpluses to the velocity on the edge (cf. Fig. 4(b)).

On the one hand, the additional DoF ũi, ṽi come along with a bit more complicated
discrete operators (element matrices) than those of Sec. 3.3. On the other hand, we now
have the possibility to adjust those surpluses in such a manner that the exact flow over the
edge is correct. This is, for example, useful for Dirichlet boundary conditions prescribing a
parabolic velocity at the inlet of a channel scenario and may be advantageous for boundary
layers, too, where parabolic profiles exist. Besides, since we always get pressure gradients
at the same locations as velocity DoF, the stencil for the PPE changes: Instead of the
usual 5-point-stencil rotated by 45 degrees, we now get a direct coupling of the “black”
and the “white” cells via the faces, which avoids the well-known checkerboard mode in
two dimensions.

4 NUMERICAL RESULTS

4.1 Runtime Comparisons of Convection and Diffusion

In this section, we compare the runtime results for one iteration over the whole adaptive
grid to compute the diffusion and convection operatorsD and C for the standard Cartesian
coordinate system and the new 45 system. The measurements for serial computations have
been carried out on a Intel i7 architecture with 2.80 GHz per core and 8MB L2 cache
using ubuntu 9.10 and gcc 4.4.1 with option -O3.

We can’t expect the overall runtime for one iteration over the whole grid to compute D
and C to scale directly like the mere number of operations listed in Sec. 3.3, due to several
reasons: First, the compiler optimises the code in a non-straightforward manner, possibly
using fused multiply-add commands. Second, cache effects may appear as we are using
real production code runs on full grids with complete timestepping, etc. Third, besides
the floating-point operations, general adaptivity computations etc. have to be performed
(including integer arithmetics) which increase the overall computational workload.

Run level # cells CPU time in s ratio

no. min max Cart 45 45/Cart

1 6 8 29,406 0.06 0.05 0.83
2 7 8 57,261 0.10 0.08 0.80
3 8 8 351,469 0.63 0.52 0.82
4 9 9 3,163,829 5.45 4.17 0.76

Table 1: Comparison of runtimes for one iteration to compute convection and diffusion (D and C) in
standard Cartesian coordinates (Cart) and in the 45 system of the cylinder benchmark (cf. Sec. 4.3) with
different refinements. The last column shows the corresponding ratio.

8



Tobias Neckel, Miriam Mehl and Christoph Zenger

Table 1 shows the results of the runtimes of one grid iteration for D and C for four
different setups of the DFG cylinder scenario (see Sec. 4.3). The CPU times are indicated
in seconds and have been averaged over several time steps to get reliable values. The first
adaptive setup corresponds exactly to Fig. 6(a) (with a general spacetree refinement level
of 6 and manual refinement up to level 8 around the cylinder, resulting in 29,406 cells), the
other ones use an increased general refinement of one level each, up to level 9 (resulting
in more than three million cells). The runtime saving for the diffusion and convection
operator evaluation sums up to a considerable amount of about 17–24 per cent.

4.2 Driven Cavity

To demonstrate the qualitatively correct behaviour of the divergence-free elements in
the 45 system, we computed two setups of the well-known lid-driven cavity with Reynolds
numbers 1 and 1000, respectively. The streamlines visualised in Fig. 5 show the expected
form. The adaptive Cartesian grids with maximum refinement level of 5 and 6 (cf. Fig. 5(a)
and 5(b)) have been created by refinement boxes near the corners where the countervor-
tices are located.
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Figure 5: Streamlines and Cartesian grid of the lid-driven cavity scenario with Re = 1 (a) and Re = 1000
(b). The maximum refinement level is 5 and 6, respectively, resulting in a total number of degrees of
freedom of 5,713 and 32,641.
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4.3 Laminar Flow around a Cylinder

The benchmark suite “laminar flow around a cylinder” [7] is used to validate also
the quantitative correctness of the flow simulations using divergence-free elements. We
computed the steady-state setup 2D-1 with Re = 20 and the time-dependent scenario
2D-2 with Re = 100. The adaptive grid in use, of which a zoomed part is visualised in
Fig. 6(a), possesses a maximum spacetree refinement level of 8 resulting in 29,406 cells
and 88,857 total DoF.

Table 2 shows a summary of the results for the two setups. We computed the force
coefficient via the method of consistent forces (cf. [2, 3]). The (maximum) drag and lift
coefficients cd and cl are in good accordance with the reference data of [7]. The Strouhal
number of the time-dependent setup demonstrates the correct frequency of the vortex
oscillations.

setup # DoF
Re = 20 Re = 100

cd cl cd,max cl,max St

level 8 (box) 88,857 5.68 0.0151 3.225 0.94 0.299

reference data – 5.58 0.0107 3.230 1.00 0.298

Table 2: Drag and lift coefficients cd, cl for the steady-state and time-dependent cylinder benchmarks [7]
at Re = 20 and Re = 100. The Strouhal number St in the last column indicates the correct frequency of
the oscillations for Re = 100.

5 CONCLUSION AND OUTLOOK

In this contribution, we presented a new representation of two-dimensional divergence-
free elements in a rotated and mirrored coordinate system that allows to easily develop
and understand these elements. Considerable runtime savings up to 24% for evaluating
the spatial operators, in particular the convection operator, can be achieved and have
been demonstrated for a suite of meshes. Using the scenarios of the driven cavity and
the flow around a cylinder with adaptively refined Cartesian meshes, we validated the
correctness of the development and implementation of the new element type in the PDE
framework Peano.

Current work is on the geometric multigrid solver for the pressure Poisson equation.
Furthermore, we plan to extend the new type of elements to the challenging three-
dimensional case.
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Figure 6: Benchmark flow around a cylinder [7]: (a) adaptive grid with maximum level 8 and 29,406 fluid
cells; (b) streamlines over pressure for setup 2D-1 (Re = 20) in the steady state; (c) streamlines over
pressure for 2D-2 (Re = 100) at time 7.93.
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ECCOMAS CFD 2006, European Conference on Computational Fluid Dynamics. TU
Delft, 2006.

[3] P. M. Gresho and R. L. Sani. Incompressible Flow and the Finite Element Method.
John Wiley & Sons, 1998.
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