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Abstract. In this paper, the arbitrary Lagrangian Eulerian (ALE) form of the compressible
Navier-Stokes equations are treated with the characteristic based split scheme. A weak integral
statement of the resulting equations is obtained by introducing weight functions. A local conser-
vative scheme can be designed by a proper integration by parts and discretization for each finite
element. This removes the standard finite element assembly, necessary for the global Galerkin
scheme and the element-by-element linking is considered by the elemental edge flux, which is
explicitly treated locally conservative. Since for each finite element a matrix system is computed
and solved independently, this discontinuous characteristic based split scheme can be easily par-
allelized.

As a numerical example for fluid structure interaction, the classical panel flutter problem is
investigated. The discontinuous characteristic based split scheme is incorporated in a flexible
coupling environment together with a finite element procedure for the structure as well as a
finite element transfer and grid deformation scheme. Results and comparison with the global
Galerkin scheme show the applicability and accuracy of the discontinuous characteristic based
split scheme.
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1 INTRODUCTION

Within the field of Computational Fluid Dynamics (CFD), a major method of solving the
governing fluid equations is the finite element method. The finite element method for fluid flow
problems was established in the last twenty years, while first attempts were made by Zienkiewicz,
[1], Oden, [2], or Chung, [3]. To use the standard Petrov-Galerkin form (weight functions are
equal to interpolation functions), stability schemes need to be used to suppress instabilities
caused by the convective terms of the fluid equations. Such stability terms are introduced
naturally by the characteristic based split scheme proposed by Zienkiewicz and Codina [4, 5],
which use a local Taylor expansion to design a computational effective scheme. A good overview
of this scheme is given by Nithiarasu in [6] and nowadays the CBS scheme is widely used to
solve the compressible and incompressible fluid flows. In this paper, the CBS scheme from [6] is
modified and extended to the Navier-Stokes equation in the arbitrary Eulerian-Lagrange (ALE)
frame of reference to take aeroelastic problems into account.

In [4], mass matrix lumping was proposed to design a matrix free solution method. However,
using the standard CBS scheme in conjunction with higher order finite elements, e.g. biquadratic
quadrilateral finite elements, mass matrix lumping is not applicable, due to the appearance of
unphysical oscillations caused by the nodal decoupling. Further and as noted in [7], the usage
of mass matrix lumping can lead to serious errors when used for transient problems. Therefore
a consistent mass matrix should be applied in such situations, which however is computational
expensive with many degrees of freedom. Alternatively, an elemental discontinuous Galerkin
form of the CBS scheme can be used, which was proposed for incompressible fluid flow problems
in [8, 9].

The discontinuous Galerkin method has been developed mainly for problems in fluid mechan-
ics and combine features of the finite element and the finite volume schemes. A good overview of
this methodology can be found in [10, 11] and the references therein. One important advantage
of the discontinuous Galerkin method is the possibility of easy parallelization of the algorithm
since this method allows an element by element solution procedure. However, each node belongs
to several elements and therefore multiple solutions for each node need to be stored, which re-
sults in a large memory requirement. Further, additional edge fluxes for each element have to
be computed, which makes the discontinuous methodology more computational expensive than
its continuous Galerkin counterpart.

In this paper, a discontinuous characteristic based split scheme for the ALE frame of reference
is employed, which has the same structure as the continuous Galerkin form of the CBS scheme.
This has the advantages, that only minor modifications to the CBS scheme are necessary and that
computational effort is reduced, [12]. The standard finite element assembly of the continuous
Galerkin form is removed and the element by element linking is done by the edge flux, which
ensures continuity between the elements. This edge flux also can be used to satisfy a local or
elemental conservation, if this flux is equal for the common boundary of two adjoining elements.
Due to the avoiding of a global matrix system, the necessity of solving a system of linear algebraic
equation is omitted.

The remainder of the paper is organized as follows. In section 2, the discontinuous character-
istic based split for the ALE frame of reference is introduced by first recapitulating the standard
global continuous Galerkin CBS scheme. In section 3, this scheme is verified by comparing
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the stationary fluid flow around the NACA0012 airfoil using the continuous and discontinuous
version of the CBS scheme. Here also higher order finite elements are involved, which is an
improvement to examples given in [6, 7], where only linear triangular elements were used. In
section 4, the three field coupling approach is introduced, which is then applied for the coupled
aeroelastic computation of the transonic panel flutter problem conducted in section 5.

2 DISCONTINUOUS CHARACTERISTIC BASED SPLIT SCHEME

The CBS scheme uses a local Taylor expansion to design a computational effective procedure
and a good overview of this scheme is given by Nithiarasu in [6] Nowadays, the CBS method with
a subsequent spatial discretization is widely used to solve the compressible and incompressible
fluid flows and the third volume of the well-known book set [7] covers the CBS scheme for
fluid dynamics in great detail. Before introducing the discontinuous characteristic based split
scheme, the global continuous Galerkin form of the CBS scheme will be written for the arbitrary
Lagrangian Eulerian (ALE) form of the Navier-Stokes equation.

2.1 Global continuous Galerkin Form of the Characteristic Based Split Scheme

With the conservative variables V = ρv and E = ρe, the non-dimensional form of the
conservative compressible Navier-Stokes equation in the ALE frame of reference can be written
as:

• equation of mass conservation:
∂ρ

∂t
+∇TV −wT∇ρ = 0 (1)

• equation of momentum conservation:
∂V

∂t
+ [∇T (vV T )]T − [wT∇V T ]T = −∇p+

1
Re

DTτ + ρb̂ (2)

• equation of energy conservation:
∂E

∂t
+∇T (vE)−wT∇E = −∇T (pv) +

1
Re
∇T (QTτ ) +

1
RePr

∇T (κ∇T ) + ρb̂Tv , (3)

where ρ, v, e, p, T and t is the fluid density, the velocity, the specific total energy, the pressure,
the temperature and the time, respectively. The vector w is the velocity of the ALE frame of
reference expressed in the Eulerian frame of reference. In vector notation, the viscous stress
vector τ is written as:

τ = µ

(
I0 −

2
3
mmT

)
Dv , (4)

with a diagonal and a operator matrix, I0 and D:

I0 =



2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 DT =

 ∂
∂x1

0 0 ∂
∂x2

0 ∂
∂x3

0 ∂
∂x2

0 ∂
∂x1

∂
∂x3

0
0 0 ∂

∂x3
0 ∂

∂x2

∂
∂x1
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and mT = [1, 1, 1, 0, 0, 0] gives the functionality of the Kronecker delta to the stress vector.
External body forces per mass unit are given by the vector b̂. Q is a 6x3 matrix, which has the
same structure as D but contains the fluid velocities as:

QT =

 v1 0 0 v2 0 v3

0 v2 0 v1 v3 0
0 0 v3 0 v2 v1

 .

Finally, the values for viscosity, µ, and the thermal conductivity, κ, are a function of the tem-
perature. For air these values are given by Sutherland’s relation through, [13]:

µ

µ0
=
(
T

T0

) 3
2 T0 + Sµ
T + Sµ

and
κ

κ0
=
(
T

T0

) 3
2 T0 + Sk
T + Sk

(5)

T0 = 273.15 K, µ0 = 1.7161 · 10−5 kg
m s , κ0 = 2.3360 · 10−2 J

m s K ,

Sµ = 110.4 K, Sκ = 112.0 K ,

where S is called Sutherland temperature, which is slightly different for the viscosity and conduc-
tivity expression. The Reynolds and Prandtl number are a results of the non-dimensionalization
and introduced as:

Re =
ρ∞v∞l

µ∞
Pr =

µ∞cp
κ∞

. (6)

The value cp is the specific heat at constant pressure and l is a reference length.
The fluid quantities are spatially discretized by a shape function interpolation as:

ρ ≈ Nρ; p ≈ Np; v ≈ Nvv; w ≈ Nvw;

s ≈ Nvs; V ≈ NvV; E ≈ NE; T ≈ NT;
(7)

where N = [N1,N2, . . . ,Nm] are the vector of shape functions at the nodes with m being the
number of nodes and ρ, p, E and T denote the vector form of the particular fluid quantity. Each
component of the fluid velocity is approximated with the shape functions as used for each other
fluid quantity and thus:

Nv =

 N1 0 0 N2 0 0 . . . Nm 0 0
0 N1 0 0 N2 0 . . . 0 Nm 0
0 0 N1 0 0 N2 . . . 0 0 Nm


V = [V11,V12,V13,V21,V22,V23 . . . ,Vm1,Vm2,Vm3]T

The velocity s is the so-called convective velocity, simply calculated as s = v − w. With this
spatial discretization and similar to the Navier-Stokes equation in a fixed Eulerian frame of
reference, see [7], Eq. (1) to (3) can be temporally treated with a global continuous CBS scheme
resulting in the following matrix system (without body forces):

4



Ralf Unger, Matthias C. Haupt and Peter Horst

1. solve an intermediate velocity ∆V̌

∆V̌ = M−1
v ∆t

[
(−CsV V −Kτv + fτ ) + ∆t(−KsV V −KpV p)

]n
, (8)

where:

Mv =
∫
Ω

NT
v Nv dΩ; Kτ =

∫
Ω

BT
τ

µ

Re

(
I0 − 2

3mm
T
)

Bτ dΩ;

CsV =
∫
Ω

NT
v Bs dΩ; fτ =

∫
Γ

NT
v ΥT

[ µ
Re

(
I0 − 2

3mm
T
)

Bτv
]
dΓ;

KsV =
1
2

∫
Ω

BT
s Bs dΩ; KpV =

1
2

∫
Ω

BT
s (∇N) dΩ;

The B-matrices are expressed as:

Bs =

 bs1 0 0 bs2 0 0 . . . bsm 0 0
0 bs1 0 0 bs2 0 . . . 0 bsm 0
0 0 bs1 0 0 bs2 . . . 0 0 bsm

 ; bsi = sTi (∇Ni)

Bτ = DNv;

The matrix ΥT contains the entries of the boundary normal vector:

ΥT =

 n1 0 0 n2 0 n3

0 n2 0 n1 n3 0
0 0 n3 0 n2 n1

 (9)

2. solve the pressure ∆p

∆p = (Mp + ∆t2θ1θ2Kp)−1∆t
[

G(Vn + θ1∆V̌) + Cwρρ
n − fV + ∆tθ1(−Kpp

n + fp)
]

, (10)

where:

Mp =
∫
Ω

NT

(
1
c2

)n
N dΩ; Kp =

∫
Ω

(∇N)T (∇N) dΩ;

G =
∫
Ω

(∇N)TNv dΩ; fp =
∫
Γ

NT (∇Npn)Tn dΓ; Cwρ =
∫
Ω

NTLw dΩ;

fV =
∫
Γ

NT (Nv[Vn + θ1∆V̌])Tn dΓ; Lw = [bw1, bw2, . . . , bwm]; bwi = wT
i (∇Ni);

where θ1 and θ2 are user-defined relaxation parameters, which are set to θ1 = 0.75, θ2 = 0.0
(explicit version). The quantity c denotes the speed of sound.
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3. correct velocity ∆V

∆V = ∆V̌ + M−1
v ∆t

[
−GT (pn + θ2∆p)

]
. (11)

4. solve energy equation ∆E

∆E = M−1∆t
[
(−CsEE− CvEp−KτEv −KTT + fE) + ∆t(−KsEE−KvEp)

]n
, (12)

with the matrices and vectors:

CsE =
∫
Ω

NTLs dΩ; CvE =
∫
Ω

NTLv dΩ; KT =
∫
Ω

(∇N)T
κ

RePr
(∇N) dΩ;

KτE =
∫
Ω

(∇N)TQT µ

Re

(
I0 − 2

3mm
T
)

Bτ dΩ; KsE =
1
2

∫
Ω

LTs Ls dΩ;

fE =
∫
Γ

NT 1
Re

(
QT

[
µ
(
I0 − 2

3mm
T
)

Bτv
]

+
κ

Pr
(∇N)T

)T
n dΓ;

M =
∫
Ω

NTN dΩ; KvE =
1
2

∫
Ω

LTs Lv dΩ; Ls = [bs1, bs2, . . . , bsm];

Lv = [bv1, bv2, . . . , bvm]; bvi = vTi (∇Ni); bsi = sTi (∇Ni);

All additional tools like mass matrix lumping, variable smoothing, artificial compressibility,
shock capturing, local time stepping can be used here, [6]. In contrast to the original proposed
scheme, the term KpV p is here evaluated within the first step instead of the third step. With
the above algorithm a solution is iterated to steady state and unsteady solution can be obtained
with the well-known dual-time stepping approach, [14]. The grid velocity w is calculated, so
that the geometric conservation law is satisfied, [15].

2.2 Discontinuous Galerkin form

As noted in [7], the usage of mass matrix lumping within the equations Eq. (8) to (12) can lead
to serious errors when used for transient problems. Further, it could be observed, that unphysical
oscillations appear in the solution, when mass matrix lumping is applied for quadratic and higher
order elements, i.e. elements with quadratic and higher order shape function interpolation. Such
oscillations result from the nodal decoupling when a lumped mass matrix is used. Therefore a
consistent mass matrix should be applied in such situations, which however is computational
expensive with many degrees of freedom. Alternatively, an elemental discontinuous Galerkin
form of the CBS scheme can be used, which was proposed for incompressible fluid flow problems
in [9].

Here, a discontinuous CBS scheme for the ALE frame of reference is now employed, which has
the same structure as the continuous Galerkin form of the CBS scheme. That has the advantages,
that only minor modifications to the CBS scheme are necessary and that computational effort is
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reduced, [12]. The standard finite element assembly of the continuous Galerkin form is removed
and the element by element linking is done by the edge flux, which ensures continuity between
the elements. This edge flux also can be used to satisfy a local or elemental conservation, if
this flux is equal for the common boundary of two adjoining elements. Due to the avoiding of a
global matrix system, the necessity of solving a system of linear algebraic equation is omitted.
A noted in [9], the discontinuous CBS scheme is not only globally but also locally conservative
in terms of the fluid variables, which is important especially for incompressible flow problems.

The discontinuous Galerkin form of the CBS scheme starts with the same weak statement
as continuous Galerkin form but an additional integration by parts for all convective terms is
applied, which yields in the appearance of an additional edge flux. Thus, for each finite element
Ωe the following matrix system has to be solved in each time step:

1. solve an intermediate velocity step ∆V̌

∆V̌ = Me,−1
v ∆t

[
(Ce

sV V −Ke
τv − fesV + feτ ) + ∆t(−Ke

sV V −Ke
pV p)

]n
, (13)

where

Me
v =

∫
Ωe

NT
v Nv dΩe; Ce

sV =
∫
Ωe

BT
s Nv dΩe; Ke

sV =
1
2

∫
Ωe

BT
s Bs dΩe

Ke
τ =

∫
Ωe

BT
τ

µ

Re

(
I0 − 2

3mm
T
)

Bτ dΩe; feτ =
∫
Γe

1
Re

NT
v ΥTNτ τ́ dΓe;

fesV =
∫
Ωe

NT
v (sTn)NvV dΓe; Ke

pV =
1
2

∫
Ωe

BT
s (∇N) dΩe;

It is imported to note, that for the boundary term feτ the nodal stress vector τ́ is needed,
which is spatial interpolated with the shape function matrix Nτ . This form ensures the
local conservation of the edge flux and requires the nodal stress values to be computed in
an additional post-processing step in each iteration. Further, the difference of Ce

sV and
CsV on element level should be pointed out.

2. solve the pressure ∆p

∆p = (Me
p+ ∆t2θ1θ2Ke

p)
−1∆t

[
Ge
V (Vn+ θ1∆V̌) + Ce

wρρ
n− feV + ∆tθ1(−Ke

pp
n+ fep)

]
, (14)

where

Me
p =

∫
Ωe

NT

(
1
c2

)n
N dΩe; Ke

p =
∫
Ωe

(∇N)T (∇N) dΩe; Ge
V =

∫
Ωe

(∇N)TNv dΩe;

fep =
∫
Γe

NTnTNvpf,x dΓe; Ce
wρ =

∫
Ωe

NTLw dΩe; feV =
∫
Γe

NT (Nv[Vn + θ1∆V̌])Tn dΓe;

Similar to the vector feτ from step 1, the nodal pressure derivatives pf,x interpolated with
Nv are needed for the fep to ensure local conservation over the element boundaries. This
nodal pressure derivatives are calculated in an extra step in each iteration.

7



Ralf Unger, Matthias C. Haupt and Peter Horst

3. correct velocity ∆V

∆V = ∆V̌ + Me,−1
v ∆t

[
Ge
p(p

n + θ2∆p)− feV 2

]
. (15)

where again integration by parts was used to obtain the elemental boundary flux feV 2 The
matrices and vectors are defined as:

Ge
p =

∫
Ωe

([
∂/∂x1 0 0

0 ∂/∂x2 0
0 0 ∂/∂x3

]
Nv

)T
N dΩe; feV 2 =

∫
Γe

NT
v nNpn dΓe;

4. solve energy equation ∆E

∆E = Me,−1∆t
[
(Ce

sEE + Ce
vEp−Ke

τEv −Ke
TT− fesE − fevE + feE)

+ ∆t(−Ke
sEE−Ke

vEp)
]n

,
(16)

with the matrices and vectors being:

Ce
sE =

∫
Ωe

LTs N dΩe; Ce
vE =

∫
Ωe

LTv N dΩe; Ke
sE =

1
2

∫
Ωe

LTs Ls dΩe;

Ke
vE =

1
2

∫
Ωe

LTs Lv dΩe; Ke
T =

∫
Ωe

(∇N)T
κ

RePr
(∇N) dΩe;

fevE =
∫
Ωe

NT (vTn)Np dΓe; Ke
τE =

∫
Ωe

(∇N)TQT µ

Re

(
I0 − 2

3mm
T
)

Bτ dΩe;

fesE =
∫
Ωe

NT (sTn)NE dΓe; feE =
∫
Γe

NT n

Re

(
QTNτ τ́ +

κ

Pr
NvTf,x

)
dΓe;

Again, the nodal temperature derivative Tf,x are needed for the element boundary flux to
ensure local conservation and this vector is computed at the end of each iteration cycle.

2.3 Calculation of the edge fluxes and continuous solution

As already mentioned above, the discontinuous CBS scheme ensures a conservation of the
flux crossing a common boundary of neighboring elements. In Figure 1, a triangular (e1) and
a quadrilateral (e2) element are depicted, which share a common edge. The condition for this
flux conservation can be expressed with the aid of the boundary normals as:

FTe1ne1 = FTe2ne2 , (17)

where Fei is the flux and nei denotes the outward normal of the common boundary. Due to
this equation, nodal values of the viscous stress vector and of the pressure and temperature
derivatives are necessary, which are calculated from the surrounding elements of the node in
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FTe2ne2
FTe1ne1

1
2

Figure 1: Triangular and Quadrilateral element sharing a common boundary, where the flux is conserved

i

1

2

3
4

5

i

4

5

2

1

3

(∇φ)i1

(∇φ)i2

(∇φ)i3

(∇φ)i4

(∇φ)i5

Figure 2: Patch of 5 finite elements and its discontinuous discretization - calculation of the a nodal
derivatives (∇φ)i

question once a global continuous solution is obtained. For triangular elements these derivatives
are constant for each element and a mean value for the node can be computed straightforward.
For quadrilateral elements and higher order elements, the derivatives are extrapolated from the
Gaussian points of the element to the node and the nodal derivative is obtained by averaging
these elemental derivatives. In Figure 2, a patch of Nie = 5 elements is shown and the nodal
derivatives (∇φ)i at a node i is calculated as:

(∇φ)i =
1
Nie

Nie∑
e=1

(∇φ)ei . (18)

In a similar way, the global continuous solution (p,V,E) is obtained by averaging the local
elemental solution at the node in question, that is:

φi =
1
Nie

Nie∑
e=1

φei , (19)

where φi is the global discrete solution at the node i and φei the solution at the node i on
element level.

After obtaining the global continuous solution, the calculation of the secondary fluid quanti-
ties like temperature, local Mach-Number, etc. is accomplished. Further, the variable smoothing
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Figure 3: Structured grid for calculation of laminar viscous flow past the NACA0012 airfoil - level 0

procedure or the shock capturing scheme can be conducted. For incompressible flow problems,
the artificial compressibility scheme is available without restriction. A transient solution can
again be recovered by the dual time-stepping approach.

3 VERIFICATION OF THE DISCONTINUOUS CBS SCHEME

In this section, both forms of the CBS scheme - continuous and discontinuous Galerkin - are
compared for an example of pure fluid motion on fixed grids, i.e. w = 0 and s = v. The fluid
flow past a NACA0012 airfoil is investigated for a free stream Mach number of Ma∞ = 0.85,
a Reynolds number of Re = 2000 and an angle of attack of α = 0◦. A structured grid around
this airfoil is generated, Figure 3, to calculate the fluid flow on different grid levels and with
different order of finite elements, i.e. linear and quadratic Serendipity elements are considered
here. The computational grid at level 0 as shown in Figure 3 is a C-type grid and consists of
561x81 points. On the airfoil, 401 points are distributed, whereas at the leading and trailing
edge a grid spacing of 0.001 and 0.0006 was chosen.

The Mach number distribution of the fluid flow around the airfoil for the level 1 grid with
bilinear quadrilateral elements using the discontinuous CBS scheme is shown in Figure 4(a).
From the qualitative point of view this solution fits very well with that reported in [16]. The
according pressure distribution is depicted in Figure 4(b). In Figure 4(c) the Mach number
contours of the flow passing the airfoil are shown using biquadratic elements on the same grid
level. The pressure distribution for the biquadratic element grid is shown in Figure 4(d). This
solution shows better results compared with the solution given in [16], whereas both orders
of interpolation use the same set of input parameters. A comparison of the discontinuous
with continuous Galerkin CBS scheme is depicted in Figure 5 in terms of the surface pressure
distribution for different grid levels and order of the spatial interpolation functions. As reference
values, the surface pressure found in [16] and [17] are incorporated. As expected, better results
are obtained with finer grids and higher order of the shape function interpolation, whereas only
minor difference between the continuous and discontinuous Galerkin version of the CBS scheme
could be observed.

Further it should be noted here, that for the continuous CBS scheme a consistent mass ma-
trix is used to solve the systems of linear equations. With the current implementation of the
algorithms and for the current flow problem, no improvement in the computational effort could
be observed, when using the discontinuous Galerkin version of the CBS scheme compared to the
continuous CBS scheme. Thus, the computational effort due to the additional edge flux evalua-
tions within each step could not be compensated with the saving due to the omission of solving
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0.0 0.2 0.4 0.6 0.8 1.0

Ma

(a) Mach number contours - bilinear elements;
level 1

−0.5 −0.3 −0.1 0.90.70.5

Cp

0.3 1.10.1

(b) pressure contours - bilinear elements; level 1

0.0 0.2 0.4 0.6 0.8 1.0

Ma

(c) Mach number contours - biquadratic ele-
ments; level 1

−0.5 −0.3 −0.1 0.90.70.5

Cp

0.3 1.10.1

(d) pressure contours - biquadratic elements;
level 1

Figure 4: Viscous flow past the NACA0012 airfoil at Ma∞ = 0.85, Re = 2000 and α = 0◦ - Mach umber
and pressure contours

a large system of linear equations. However, with grids involving more nodes, an improvement
in the computational effort is likely to be observed, since the costs for the calculation of the edge
flux varies linearly with number of nodes Nm, while the costs for solving a system of equations
goes with N3

m (for the Gaussian elimination).

4 THREE-FIELD COUPLING APPROACH

For a coupled problem like a fluid flow interacting with a structure, a so-called three-field
approach is used here, [18]. Both, the fluid and the structure, need to interchange data at an
interface. Additionally, a frame is introduced to that each subdomain is connected only. The
advantage of this three-field approach lies in the independent discretization of the frame, which
allows a smooth data transfer across the interface by keeping the load and energy conservation
property of the data transmission. In the context of the three-field approach the whole coupled
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0.0 0.2 0.4 0.6 0.8 1.0
x/c

1.0

0.5

0.0

-0.5

C
p

bilinear - level 1

bilinear - level 2

biquadratic - level 1

biquadratic - level 2

surface pressure taken from [16]

surface pressure taken from [17]

(a) continuous Galerkin version of the CBS scheme

0.0 0.2 0.4 0.6 0.8 1.0
x/c

1.0

0.5

0.0

-0.5

C
p

bilinear - level 1

bilinear - level 2

biquadratic - level 1

biquadratic - level 2

surface pressure taken from [16]

surface pressure taken from [17]

(b) discontinuous Galerkin version of the CBS scheme

Figure 5: Viscous flow past the NACA0012 airfoil at Ma∞ = 0.85, Re = 2000 and α = 0◦ - surface
pressure distribution

problem can be written in an operator-matrix form as:

Fluid:
Structure:

Transfer Fluid:
Transfer Structure:

Frame:


F 0 Mff 0 0
0 S 0 Mss 0

Mff 0 0 0 −Mfc

0 Mss 0 0 −Msc

0 0 −Mcf −Mcs 0




uΓ
f

uΓ
s

λ̂f
λ̂s
uc

 =


0
fΓ
s

0
0
0

 (20)

where the fluid and structural operators F and S involve the computations of the fluid and
structure subdomain, respectively. The nodal vectors uΓ

f , uΓ
s , λ̂f and λ̂s denotes the displacement

field vector and the vector of discrete Lagrange multipliers on the fluid (subscript: f ) and
structural (subscript: s) interface Γ, respectively. The Lagrange multipliers femvecλ̂i are defined
on the the ith interface, i.e. they are localized on their respective interface representation, [19].
The vector uc stands for the discrete frame displacement field (subscript: c) and fΓ

s are external
nodal forces on the structure, which have other sources than the forces caused aerodynamically
by the fluid. The coupling matrices are calculated by an integral statement as:

Mij =
∫
Γ

NT
i Nj dΓ , (21)

The coupled system can be solved by a Richardson equilibrium iteration in each time step
as:

uΓ
s = S−1 ◦ (fΓ

s −Mss ◦M+
cs
T ◦Mcf︸ ︷︷ ︸

∧
=Msf

◦M−1
ff ◦F ◦M−1

ff ◦Mfc ◦M+
cs ◦Mss︸ ︷︷ ︸

∧
=Mfs=MT

sf

◦ uΓ
s ) , (22)

where it IS assumed that the number of fluid nodes on the interface is greater than the struc-
tural interface nodes. The matrix M+

cs = (Mcs ◦Msc)−1 ◦Mcs denotes the Moore-Penrose
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Figure 6: Time integration and equilibrium iteration for the coupled problem

pseudoinverse. Further it should be noted here, that the fluid is solved as a Dirichlet, whereas
the structural subdomain is solved as Neumann problem. With this iteration procedure, the
time integration and equilibrium iteration of the coupled problem can be illustrated as shown
in Figure 6, where the time loop index is n and the iteration index is k. For the vector uΓ,n+1

s,k=0 a
second order time accurate predictor is used, [20]. Within the iteration control box a relaxation
of the most recent computed structural displacement field ŭΓ,n+1

s is conducted.

5 PANEL FLUTTER PROBLEM

The typical non-linear and dynamic aeroelastic phenomenon of the panel flutter is investigated
with the aid of schemes presented in previous sections. This classical aeroelastic problem often
used as an aeroelastic model problem exhibit a limit cycle oscillation (LCO), i.e. the flutter
amplitude is restricted due to the non-linear nature of the thin structure.

5.1 Problem description and aeroelastic parameters

The panel flutter problem consists of a simply supported plate over which a fluid flows, Fig-
ure 7. Due this fluid flow, the panel can exhibit a self-exciting oscillation - a flutter phenomenon.
Usually the plate or panel is very thin and has therefore to be modeled as a non-linear structure,
which leads to a restriction of the flutter amplitude (limit cycle oscillation). The occurrence of
such LCO depends on the combination of parameters like the panel thickness, the flow Mach
number or the flow pressure at infinity.

To take the large structural deformation into account, the panel itself is modeled with the
von Kármán plate model, where the non-linearity comes from an in-plane restoring force, whose
value depends on the panel deflection, [21, 22]. Here, the structural system is spatially discretized
by Timoshenko beam elements, which are free of shear locking, resulting in the following matrix
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Ma, ρf,∞, pf,∞

pf
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Figure 7: Description of the panel flutter problem

system, [23, 24]:[
(ρshs)Mu +

ρsh
3
s

12
Mθ

]
üs +

[
DKu + 5

6GhsKθ + 1
2Ehs(u

T
s KRus)KR

]
us = fu,ext , (23)

where the values D and G denotes the plate stiffness and shear module of the panel with:

D =
Eh3

s

12(1− ν2
s )

; G =
E

2(1 + νs)
; (24)

with E and νs being the Young’s modulus and the Poisson’s ratio of the panel, respectively.
The non-linearity is given by the third part of the stiffness term in Eq. (23). For a definition of
the matrices Mu, Mθ, Ku, Kθ and KR consult [23, 24].

The structural parameters like panel length ls, thickness hs, stiffness and the fluid parameters
like density, pressure and velocity of the flowing air at infinity can be expressed through three
aeroelastic parameters.

1. non-dimensional mass ratio rm:

rm =
ρf,∞ls
ρshs

=
ρf,∞

ρs
hs
ls

(25)

2. non-dimensional dynamic pressure rp:

rp =
ρf,∞v

2
f,∞l

3
s

D
=
ρf,∞v

2
f,∞12(1− ν2

s )

E
(
hs
ls

)3 (26)

3. reduced frequency K

K =
πfls
vf,∞

, (27)

Here, the reduced frequency is the result of the computation for the panel flutter problem
and therefore the Mach number Ma∞ is used as third input parameter. Thus, the aeroelastic
problem of the panel flutter is defined by the three input parameter (rm, rp,Ma∞). Given a
panel with the material density ρs, Young’s modulus E and Poisson’s ratio νs as well as the
geometric parameters hs and ls, the fluid density velocity at infinity are obtained from Eq. (25)
and (26), respectively.
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Figure 8: Unstructured grid for calculations of inviscid panel flutter problem

5.2 Transonic Panel Flutter

The panel flutter problem is investigated at a transonic Mach number of Ma∞ = 1.0. The
panel is made by aluminum with a density of ρs = 2700 kg/m3, a Young’s modulus of E =
7.1 · 1010 N/m2 and Poisson’s ratio of νs = 0.34. The geometry of the panel is set to a thickness
of hs = 4.537 mm and a length of ls = 1.0 m and the panel is simply supported at x/ls = 0.0
and x/ls = 1.0

In [25] a bifurcation of the panel’s aeroelastic behavior with a constant mass ratio of rm = 0.1
was reported when increasing the non-dimensional dynamic pressure rp from 160 to 180. At a
pressure of rp = 180 a limit cycle oscillation can be observed and for rp = 160 a divergence of
the panel is predicted. For a pressure of rp = 170 flutter should be observed and therefore this
case is chosen as a testcase. For this testcase, an inviscid fluid is assumed and therefore the
Euler equations of the fluid motion are solved.

5.2.1 Principal flutter behavior

In a first initial verificational computation, a triangular unstructured grid is used as depicted
in Figure 8. This grid consists of 7516 nodes connected to 14521 elements. In the vicinity of
the panel (0.0 ≤ x ≤ 1.0) small elements were placed, Figure 8(b), and the fluid interface is
discretized with 400 elements.

For the calculations presented in this section a constant time step of ∆t = 10−3 s is used. A
simple staggered scheme, where one data exchange is conducted in each time step, is used here
in conjunction with a second order predictor for the structural displacements. The structure
itself is discretized with 100 elements. Further, in terms of the CBS scheme, the explicit scheme
with θ1 = 0.75 and θ2 = 0.0 was applied as well as the consistent mass matrix within the CBS
scheme was used.

In Figure 9, the midpoint deflection of the panel using both - the continuous and discontinuous
- version of the CBS scheme is depicted. Both methods show a similar dynamic panel behavior.
The time history is non-dimensionalized with πls/vf,∞ so that the reduced period time 1/K can
be directly identified from the time history plots. With a continuous CBS scheme a reduced
frequency of K = 0.116 could be computed whereas the frequency for the discontinuous version
is 0.113. The flutter amplitudes were (us/hs)x/ls=0.5 = 1.72 and 1.70 for the continuous and
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Figure 9: Midpoint deflection of the panel using continuous and discontinuous version of CBS scheme -
time step size ∆t = 0.001 s⇒ ∆t · vf,∞/(πls) = 0.094
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Figure 10: Deformation of the panel during one cycle of oscillation and the according pressure load on
the panel using discontinuous version of CBS scheme

discontinuous CBS scheme, respectively. These results fit very well with those reported in [25],
where a reduced frequency of 0.108 and a non-dimensional amplitude of 1.79 was obtained.

The deflection of the panel over one period of the limit cycle oscillation is shown in Fig-
ure 10(a), where the panel deformation is also colored. The panel is fully deflected in positive
y-direction at a non-dimensional time t·vf,∞/(πls) = 74.4. The structure then rapidly deflects to
the opposite direction. From the bottom dead center the panel is now deformed to the top dead
center, while the deflections show a wavelike behavior, where the first 50% of the panel reaches
a positive deflection at t · vf,∞/(πls) ≈ 79.0 before the remaining panel part follows upward.
The corresponding pressure coefficient on the fluid discretization of the interface is shown in
Figure 10(b), where a weak shock occurs on the panel, which is mostly present while the panel
deforms from bottom to the top dead center. This shock moves from middle to the end of the
panel and the Galerkin based transfer is able to resolve this shock while the pressure distribution
is transmitted from a fine fluid interface grid to the structural interface representation.
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Figure 11: Example of a structured grid for calculations of inviscid panel flutter problem - 160 elements
distributed on the panel

5.2.2 Convergence study on structured grids

According to section 3, a structured grid is now used for the panel flutter problem, due to
its simple creation of similar grids with bilinear or biquadratic finite elements at different grid
refinement levels. In Figure 11, an example of a structured grid is shown, which is characterized
by the existence of 160 elements distributed on the panel. Other discretizations created for
the computations use 80, 120, 240 or 320 elements on the panel. Here again the panel flutter
phenomenon is computed with the same parameter set as described above (Ma∞ = 1.0, rm =
0.1, rp = 170).

CBS scheme
continuous discontinuous

80 linear elements: 0.1686 0.1651

160 linear elements: 0.1376 0.1369

240 linear elements: 0.1192 0.1187

320 linear elements: 0.1090 0.1088

80 quadratic elements: 0.1522 0.1518

120 quadratic elements: 0.1121 0.1117

Table 1: Reduced frequency of the limit cycle oscillation using different versions of the CBS scheme and
number of elements on the interface

In Figure 12, the midpoint deflection together with the midpoint velocity is shown for different
discretizations and for different spatial order of finite elements. Using coarse grid with bilinear
elements and with 80 elements on the interface, a high flutter frequency of 0.1686 and 0.1651
for both versions of the CBS scheme are obtained, Table 1. Comparing these results with a
finer grid, e.g. 320 elements at the interface Figure 12(d), this high frequency is caused by a
non-satisfying midpoint velocity time history. While the panel moves to the top dead center,
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(d) 320 linear elements on the fluid interface
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Figure 12: Midpoint deflection of the panel using different version of CBS scheme and number of elements
at the fluid interface
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Figure 13: Stability boundary of a simply supported panel at rm = 0.1

the velocity shows a higher mode, where the midpoint velocity almost reaches zero. Further,
from Table 1 it can be seen, that with more linear elements, the flutter frequency is reduced to
the value reported in [25], where the difference between the continuous and the discontinuous
Galerkin CBS scheme also is reduced with finer grids.

Using grids with biquadratic elements, similar expressions can be made. Although better
results could be obtained when using 80 elements at the fluid interface, the velocity time history
of the midpoint deflection is still insufficient. With 120 quadratic elements at the interface,
the obtained reduced frequency lies between that obtained with grids where 240 and 320 linear
interface elements were used. This confirms the observation known from finite element analysis,
that a p-refinement converges better than a h-refinement of the grid.

Finally, the stability boundary chart of the panel is depicted in Figure 13, where the com-
putations were carried out with the discontinuous version of the CBS scheme. Here it can be
seen, that with a Mach number of Ma∞ < 1.0 the stability boundary divides the Ma− rp-plane
into an area with divergence and an area with stable flutter behavior. For a Mach number
Ma∞ > 1.0, the Ma− rp-plane is divided into areas with a stable and with an unstable flutter
behavior. This results fits very well with those obtained in [26].

6 CONCLUSIONS

In this paper the applicability of the CBS scheme for problems in fluid structure interaction
was verified. Contrary to the finite volume method, one major drawback of the standard CBS
scheme is its non-local conservation property. In this paper, a discontinuous Galerkin version of
the CBS scheme was employed for the Navier-Stokes equation in the ALE frame of reference.
This discontinuous Galerkin version has three advantages: first, the flux crossing two adjacent
elements can explicitly set equal, second, for cases where a lumped mass matrix is disadvanta-
geous to use, the discontinuous Galerkin version can be utilized to avoid solving a large system
of linear algebraic equations, and third the changes in the code implementation are small and
only a few extra methods are needed.

The discontinuous Galerkin CBS scheme was verified for the laminar flow around the stan-
dard NACA0012 airfoil for different grid levels and spatial order of finite elements, where only
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small differences between the continuous and discontinuous version could be observed. As an
aeroelastic example, the classical panel flutter problem was chosen. Here, the differences in the
obtained flutter frequency are again small, although slightly better results could be obtained
with the discontinuous Galerkin CBS scheme.
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