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∗Institut de Mathématiques de Bordeaux, UMR 5251, Institut Polytechnique de Bordeaux,
351 cours de la Libération, F-33405 Talence, France.

e-mail: aregba@math.u-bordeaux1.fr
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Abstract. We construct a family of Riemann solver free finite volume schemes for
systems of conservation laws. The method is based on a relaxation approximation which
takes the form of a BGK system. We prove convergence for unstructured grids in the
scalar case. We present 2D computations for Euler equations.
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1 INTRODUCTION

In this paper we construct some finite volume discretisations for hyperbolic systems of
conservation laws in two space dimensions, in an open subset Ω ⊂ R2 with C2 boundary
∂Ω :

∂tU + ∂x1A1(U) + ∂x2A2(U) = 0 in ]0,+∞[×Ω, (1)

where U(x, y, t) ∈ Rp and A1, A2 are smooth functions with values in Rp. We denote u0

an initial value for this system:

U(x1, x2, 0) = U0(x1, x2). (2)

D. Aregba-Driollet and R. Natalini2 designed a class of numerical schemes based on a dis-
crete kinetic approximation of the Cauchy problem for (1). These schemes were extended
to the initial-boundary value problem by D. Aregba-Driollet and V. Milǐsić1. All these
schemes were designed on cartesian grids, here we extend these works to unstructured
grids.

To approximate the solutions of (1), we choose a semilinear hyperbolic system of BGK
type :  ∂tf

ε
l + λl1∂x1f

ε
l + λl2∂x2f

ε
l =

1

ε
(Ml(U

ε)− f εl ) l ∈ {1, · · · , N}

f εl (0, x) = Ml(U0(x))
(3)

where (λld), 1 ≤ l ≤ N , d = 1, 2 are fixed real numbers, U ε is defined by U ε =
∑N

l=1 f
ε
l ,

and ε is a positive parameter. The link between (1) and (3) is done via the following
compatibility conditions:

Definition 1.1. Let I ⊆ Rp be a fixed domain. A Lipschitz continuous function M =
(Ml)1≤l≤N : I → (Rp)N is a (local) Maxwellian Function for (1) and with respect to I if
the following (compatibility) conditions are verified for all U ∈ I:

N∑
l=1

Ml(U) = U (4)

N∑
l=1

λldMl(U) = Ad(U) d = 1, 2. (5)

It is easy to see formally that if conditions (4)(5) are satisfied and if U ε tends to a limit
function U as ε→ 0 then U is a solution of (1). In the following we shall assume that the
function M is a Maxwellian Function.

Actually one needs for some stability conditions to ensure this convergence, namely:
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Definition 1.2. The functions M = (Ml)1≤l≤N is Monotone Non Decreasing (MND)
on I if all the eigenvalues of M ′

l (U) are real and non negative for all U ∈ I and all
l = 1, . . . , N . In particular in the scalar case p = 1 it means that M ′

l (U) ≥ 0 on I for all
l.

It can be shown that the MND property is closely related to Liu’s subcharacteristic
condition interlacing the eigenvalues of system (1) and the characteristic velocities λld, see
Aregba-Driollet and Milǐsić1. In the scalar case, suppose that the maxwellian function is
MND on [−‖U0‖∞, ‖U0‖∞]. Then U ε → U , the unique entropy solution of the Cauchy
problem (1-2), see Natalini8. This result has been extended to the initial-boundary prob-
lem in Milǐsić7. In the case of systems with a strictly convex entropy, see Bouchut3

for the relationship between the MND condition and the entropy properties of the BGK
approximation.

In this paper, for the numerical experiments we focus our attention on the following
4 orthogonal velocities model because the needed information for applying the MND
property is minimal: one has just to know the spectral ray of the jacobian of the fluxes.
The velocities vectors are

−→
λ1 = λx

(
1
0

)
−→
λ2 = λy

(
0
−1

)
−→
λ3 = λx

(
−1
0

)
−→
λ4 = λy

(
0
1

)
,

and the Maxwellian Functions are

M1(U) =
1

4
[U +

2A1(U)

λx
]

M2(U) =
1

4
[U − 2A2(U)

λy
]

M3(U) =
1

4
[U − 2A1(U)

λx
]

M4(U) =
1

4
[U +

2A2(U)

λy
]

Here the stability condition reads

λx > 2 sup
U∈I
|σ(A′1(U))|

λy > 2 sup
U∈I
|σ(A′2(U))|,
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where σ(·) is the spectrum of the jacobian matrices.
The plan of the paper is the following: in section 2 we construct the schemes and give

a convergence result for the scalar case. In the last section numerical experiments are
performed on Euler equations of gas dynamics.

2 KINETIC FINITE VOLUME SCHEMES

In this part we design a numerical scheme for the relaxing semilinear system (3) asso-
ciated with (1), (2). We present here a cell-center type finite volume method on unstruc-
tured grid. Our aim is to construct a scheme of the following form :

Un+1
i = Un

i −
∆t

|Ci|
∑

e=Ci∩Cj

|e|gij(Un
i , U

n
j , ne)

U0
i =

1

|Ci|

∫
Ci

U0(x1, x2) dx1dx2.

(6)

2.1 Geometry and notations

We shall collect here the assumptions concerning geometry and the notations used in
this work.

Definition 2.1. Let a k-polygon be a closed, convex polygon with k vertices. The set
Th := {Ci/Ci is a k-polygon for i ∈ I ⊆ N} (where I ⊆ N is an index set) is called an
unstructured grid of Ω ⊂ Rn if the two following properties are satisfied :

1. Ω =
⋃
i∈I Ci

2. For two different Ci and Cj , we have Ci ∩ Cj = ∅, or Ci ∩ Cj = a common vertex
of Ci, Cj or Ci ∩ Cj = a common edge of Ci, Cj.

Definition 2.2. Let (Ci)i∈I denote an unstructured grid of R2. We shall use the following
notation :

Ci : The cell number i of the grid.
|Ci| : Area of the cell Ci (2-dimensional Lebesgue measure).
eij: Edge Ci ∩ Cj of the cell Ci
ET : Set of all the edges of the mesh.
|e| : Length of the edge e (1-dimensional Lebesgue measure).
Γi : Boundary of Ci.
Pi =

∑
e∈Γi
|e| : Perimeter of Ci.

Γij : Common edge of the boundary between Ci and Cj.
Vi : The set of cells Cj which have a common edge with Ci.
Ni : The set of the indices j of the cells Cj which have a common edge with Ci.
ne = : Outer unit normal from edge e.
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λl(ne) = λl · ne.
h = supi∈I hi, where hi is the exterior diameter of Ci.
Un
i : approximation of the exact solution U on Ci at time n∆t.

Let us make the following assumptions on the geometry :

Assumption 2.1. We assume that there are two constants c1 et c2 such that

0 < c1 ≤
∆t

h
≤ c2 (7)

if ∆t, h→ 0. Moreover, we assume that there exists a constant cV > 0 such that

sup
i

h2

|Ci|
≤ cV (8)

2.2 Design of the schemes

The timestep is denoted by ∆t and discrete times are t0 = 0 and tn+1 = tn + ∆t. Each
Un
i is an approximation of the mean value of U(·, tn) on the cell Ci. At time t0 = 0, if U0

is the initial value, we take

U0
i =

1

|Ci|

∫
Ci

U0(x1, x2)dx1dx2.

For the microscopic (kinetic) variables, we use as initial conditions :

f 0
l,i = Ml(U

0
i ).

We use a fractional step method : first we solve the homogeneous hyperbolic problem on
[tn, tn+1]: {

∂tf
ε
l + λl1∂x1f

ε
l + λl2∂x2f

ε
l = 0 l ∈ {1, · · · , N}

f εl (x1, x2, tn) = f ε,n(x1, x2)
(9)

As the system is diagonal, we may consider each equation separately. That is, we
choose a conservative scheme of flux ϕl for the lth-equation. Then we obtain a scheme
under conservative form :

f
ε,n+1/2
l,i = f ε,nl,i −

∆t

|Ci|
∑

e=Ci∩Cj

|e|ϕl(f ε,nl,i , f
ε,n
l,j , ne).

Next, taking f
ε,n+1/2
l,i as initial condition at time tn, we solve the ordinary differential

system : {
∂tf

ε
l,i = 1

ε
(Ml(U

ε,n
i )− f εl,i)

f εl,i(tn) = f
ε,n+1/2
l,i
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Thanks to the compatibility condition (4), we may solve explicitly this system. Then
we write the solution :

f ε,n+1
l,i = (1− e−

∆t
ε )Ml(U

ε,n+1/2
i ) + e−

∆t
ε f

ε,n+1/2
l,i ,

where

U
ε,n+1/2
i =

N∑
l=1

f
ε,n+1/2
l,i .

Note that
U ε,n+1 = U ε,n+1/2.

We have constructed a family of numerical scheme for the semilinear system (3), that
differ by the choice of the homogeneous scheme.

When ε→ 0, we obtain the relaxed limit of the scheme :
fnl,i = Ml(U

n
i )

f
n+1/2
i = H∆(∆t)fni

Un+1
i =

N∑
l=1

f
n+1/2
l,i

where H∆(∆t) represents the numerical scheme applied to the kinetic equations (9).
In order to obtain a finite volume formulation (6), we have to choose for each kinetic

equation a numerical scheme, which can be defined by its numerical flux, called ϕl for the
lth equation. According to the form of the relaxed scheme, the numerical scheme is the
following : 

Un+1
i = Un

i −
∆t

|Ci|
∑

e=Ci∩Cj

N∑
l=1

|e|ϕl(Ml(U
n
i ),Ml(U

n
j ), ne)

U0
i =

1

|Ci|

∫
Ci

U0(x1, x2)dx1dx2.

(KFVS)

This scheme is of the form (6) with

gij(Ui, Uj, ne) =
N∑
l=1

ϕl(Ml(Ui),Ml(Uj), ne). (10)

3 Convergence in the scalar case

In the scalar case p = 1 we are able to prove convergence of schemes (KFVS) following
the lines of Kröner and Rokyta’s work6. A preliminary result is the existence of kinetic
entropies:
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Theorem 3.1 (Bouchut3). Let η a strictly C1-convex entropy, the condition

M ′
l (u) ≥ 0, ∀u ∈ I, ∀l ∈ {1, . . . , N}

is equivalent to existence of kinetic entropies Sl,η defined in the following way :

Sl,η(f) =

∫
R

1

2
(|f −Ml(k)| − |Ml(k)|)η′′(k)dk +

1

2
f(η′(−∞) + η′(∞)).

They own the following properties :

Functions Sl,η are C2 − convex in [Ml(−‖u0‖∞),Ml(‖u0‖∞)]. (11)

∀w ∈ I, S ′l,η(Ml(w)) = η′(w), (12)

N∑
l=1

λldSl,η(Ml(w)) = Aη,d(w). (13)

N∑
l=1

Sl,η(Ml(w)) = η(w)− η(0). (14)

The identity (12) holds in the sense of subdifferentials :
for all f ∈ [Ml(−‖u0‖∞),Ml(‖u0‖∞)], and for all w ∈ I,

Sl,η(Ml(w))− Sl,η(f)− η′(w)(Ml(w)− f) ≤ 0. (15)

It ensures, for each kinetic equation, the existence of an entropy pair
(Sl,η, Fl), where Fld(s) = λldSl,η(s).

We make the following assumptions on the kinetic numerical fluxes:

Assumption 3.1. For all l ∈ {1, . . . , N}, let ϕl be a numerical flux of linear three-points
scheme in conservation form, consistent with λlfl · ne i.e.

ϕl(u, u, ne) = λlu · ne (16)

We assume that ϕl is Lipschitz-continuous. In particular, suppose that for all M > 0
there is a constant Cϕl(M) such that for all u, u′, v, v′ ∈ [−M,M ]

|ϕl(u, v)− ϕl(u′, v′)| ≤ Cϕl(M)(|u− u′|+ |v − v′|) (17)

and that ϕl is conservative, i.e.

ϕl(u, v, ne) = −ϕl(v, u,−ne) (18)

Moreover, we assume that ϕl is monotone :

∂

∂u
ϕl(u, v) ≥ 0 ≥ ∂

∂v
ϕl(u, v) (19)
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Assumption 3.2. Let η : R → R be Lipschitz-continuous and convex, and let (Sl,η, Fl)
be an entropy pair for (9). We assume that for all l ∈ [1, N ] there exists a numerical
entropy flux Gl which is :

(i) consistent with Fl(u) · ne = λl · neSl,η(u) i.e

Gl(u, u, ne) = λl · neSl,η(u) (20)

(ii) Lipschitz-continuous, such that for all M > 0 there is a constant CGl(M) such that
for all u, u′, v, v′ ∈ [−M,M ] ⊂ R

|Gl(u, v)−Gl(u
′, v′)| ≤ CGl(M)(|u− u′|+ |v − v′|) (21)

(iii) conservative, i.e. for all j ∈ Ni

Gl(u, v, ne) = −Gl(v, u,−ne) (22)

and

(iv) satisfies the kinetic compatibility condition

∂Gl

∂v
(p, q, ne) = S ′l,η(q)

∂ϕl
∂q

(p, q, ne) (23)

Let us note that if we choose the (linear) Godunov numerical flux for each ϕl then
assumptions 3.1 and 3.2 are verified. On another hand this choice is the optimal one for
first order, as it is the less diffusive one.

Lemma 3.1. For all i ∈ I, we have :∑
e⊂Ci

e=Ci∩Cj

|e|ne = 0

A key result to prove convergence is the L∞ stability of the scheme, which implies
monotony and entropy dissipation.

Proposition 3.1 (L∞ stability). Let u0 ∈ L∞(R2) ∩ L1(R2). Let uni defined by the kfv
scheme (KFVS) such that the fluxes ϕl satisfy the assumptions 3.1. We denote M =
‖u0‖L∞(R2) and

C(M) =
∑
l

Cl(Ml(‖u0‖∞)).

We assume that the CFL-type condition

∆t

h
≤ 1

k · C(M)cV
, (24)

8
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where cV is defined as in (8), is fullfilled. We assume that the maxwellian functions Ml

are MND on [−M,M ]. Then we have, for all n ∈ N,

‖un‖L∞(R2) ≤ ‖u0‖L∞(R2). (25)

Proof. The KFVS method is given by :

un+1
i = uni −

∆t

|Ci|
∑
e⊂Ci
e=Γij

|e| gij(uni , unj , ne)

= uni −
∆t

|Ci|
∑
e⊂Ci
e=Γij

|e| (gij(uni , unj , ne)− gij(uni , uni , ne)),

by lemma 3.1. Then

un+1
i = uni −

∆t

|Ci|
∑
e⊂Ci
e=Γij

Dn
ij(u

n
i − unj ).

where

Dn
ij = |e|

gij(u
n
i , u

n
j , ne)− gij(uni , uni , ne)
uni − unj

for unj 6= uni (26)

and
Dn
ij = 0 for unj = uni . (27)

Next we can write

un+1
i = uni

1− ∆t

|Ci|
∑
e⊂Ci
e=Γij

Dn
ij

+
∆t

|Ci|
∑
e⊂Ci
e=Γij

Dn
iju

n
j .

Let us assume that for a fixed n ≥ 0, ‖un‖L∞(R2) ≤M . By assumption 3.1 and monotony
of the maxwellian functions

0 ≤ Dn
ij ≤ C(M)h,

and using the CFL-type condition (24) and assumption 2.1∣∣∣∣∣∣∣∣
∆t

|Ci|
∑
e⊂Ci
e=Γij

Dn
ij

∣∣∣∣∣∣∣∣ ≤ k
∆t

mini∈I |Ci|
C(M)h ≤ 1.

9
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Finally we have, due to the convex combination

|un+1
i | ≤ |uni |

1− ∆t

|Ci|
∑
e⊂Ci
e=Γij

Dn
ij

+
∆t

|Ci|
∑
e⊂Ci
e=Γij

Dn
ij|unj |

≤ ‖un‖L∞(R2)

1− ∆t

|Ci|
∑
e⊂Ci
e=Γij

Dn
ij

+
∆t

|Ci|
∑
e⊂Ci
e=Γij

Dn
ij‖un‖L∞(R2)

≤ ‖un‖L∞(R2) ≤M.

Then we get ‖un+1‖L∞(R2) ≤M and we can complete the proof by induction.

Kröner and Rokyta6 proved convergence for upwind finite volume schemes. The above
stability result allows us to prove monotony and to define an entropy numerical flux,
which satisfies the compatiblity condition (23). We are then able to prove the convergence
theorem:

Theorem 3.2. We consider the Cauchy problem (1)-(2) and the approximate solution
{uh} defined by the kinetic finite volume (first-order) method (KFVS). We suppose that
the maxwellian functions are MND on the interval [−‖u0‖∞, ‖u0‖∞] and we take M >
‖u0‖∞. We suppose that the conditions (7), (8) for the triangulation hold, and that the
CFL condition (24)

∆t

h
≤ 1

k · C(M)CV
, (28)

is satisfied. Then the method (KFVS) converges weak-? to the unique entropy solution in
the sense of Kružkhov of the Cauchy problem (1)-(2).

uh → u weak − ?, u ∈ L∞(R2 × R+).

3.1 Extension to second order in space

We focus now on the extension to second order of these family of kinetic schemes. The
semi-discrete version of these scheme is :

|Ci|
dUi
dt

+
∑

e=Ci∩Cj

|e|g(Ui, Uj, ne) = 0, Ci ∈ Th. (29)

For internal edges, the fonction g(., ., ne) is equal to the kinetic flux as shown above. The
extension to second order accury consists in replacing the states Ui and Uj in relation
(29) by nonlinear extrapolations Ui,e and Uj,e on each side of the boundary, constructed
from the previous states as explained in the sequel. We follow here the method given by

10
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F. Dubois and O. Michaux4, which is a generalization of Van Leer’s10 MUSCL scheme
for unstructured meshes.

Let us introduce the set Vi of neighbouring cells of a given cell Ci :

Vi = {Cj ∈ Th, e ∈ ET , e ⊂ Ci ∩ Cj}.

We also introduce the point yi,e on the interface e that links the barycenters xi and xi,j(e) :{
yi,e =(1− θi,e)xi + θi,exi,j(e), yi,e ∈ e,

e ⊂ ∂Ci, Ci ∈ Th.
(30)

Next, for z equal to one scalar variable of the family :

z ∈ {ρ, ρu, ρv, p} (31)

we evaluate a mean value zi,e on the interface e :

zi,e = (1− θi,e)zi + θi,ezi,j(e), (32)

and the gradient ∇z|i of field z(·) in volume Ci with a Green formula :

∇z|i =
1

|Ci|

∫
∂Ci

z n dγ =
1

|Ci|
∑
e⊂∂Ci

|e| zi,e ne, Ci ∈ Th. (33)

An extrapolation of field z(·) is given by

zi,e = zi +∇z|i · (yi,e − xi),

but the variation ∇z|i · (yi,e − xi) has to be limited. To this end we define the minimum
mi(z) and the maximum Mi(z) of field z in the neighbouring cells :

mi(z) = min{zj, Cj ∈ Vi} (34)

Mi(z) = max{zj, Cj ∈ Vi}. (35)

If the value zi is extremum among the neighbouring ones, we impose that the extrapolated
value zi,e is equal to the cell value zi :

zi,e = zi if zi ≤ mi(z) or zi ≥Mi(z), e ⊂ ∂Ci. (36)

We introduce a nonlinear extrapolation of the field z(·) between center xi and boundary
face yi,e (e ⊂ ∂Ci) :

zi,e = zi + αi(z)∇z|i · (yi,e − xi), e ⊂ ∂Ci (37)

11
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where αi(z) is a limiting coefficient satisfying the following conditions :{
0 ≤ αi(z) ≤ 1, z ∈ {ρ, ρu, ρv, p}, Ci ∈ Th
k(zi −mi(z)) ≤ αi(z)∇z|i · (yi,e − xi) ≤ k(Mi(z)− zi), ∀e ⊂ ∂Ci, Ci ∈ Th.

(38)

Then αi(z) is chosen as large as possible and less than or equal to 1 in order to satisfy
the constraints :

αi(z) = min

[
1,

min(Mi(z)− zi, zi −mi(z))

max{|∇z|i · (yi,e − xi)|, e ⊂ ∂Ci}

]
. (39)

For k = 1, we recover the initial limiter proposed by Van Leer9. When k = 1/2, we obtain
the minmod limiter proposed by Harten5. The intermediate value k = 3/4, which was
named STS by Dubois and Michaux is a good choice between the two others.

3.2 Second order in time

When all values zi,e are known for all control voumes, all faces and all fields, extrapo-
lated states Ui,e are naturally defined by going back to the conservatives variables. Then
we introduce these states as arguments of the flux function g.. and obtain by this way a
new system of ordinary differential equations :

|Ci|
dUi
dt

+
∑
e⊂∂Ci

|e|g(Ui,e, Ui,j(e), ne) = 0, Ci ∈ Th. (40)

To have a second order accuracy in time, we use a two-steps Runge-Kutta scheme :

|Ci|
∆t

(U
(1)
i − Un

i ) +
∑
e⊂∂Ci

|e|g(Un
i,e, U

n
i,j(e), ne) = 0, Ci ∈ Th, (41)

|Ci|
∆t

(U
(2)
i − U

(1)
i ) +

∑
e⊂∂Ci

|e|g(U
(1)
i,e , U

(1)
i,j(e), ne) = 0, Ci ∈ Th, (42)

Un+1
i =

1

2
(U

(2)
i + Un

i ), Ci ∈ Th. (43)

4 NUMERICAL EXPERIMENTS

We approximate a weak solution U of Euler’s system of gas dynamics in two dimensions

U =


ρ
ρu
ρv
E

 , A1(U) =


ρu

ρu2 + p
ρuv

(E + p)u

 , A2(U) =


ρv
ρuv

ρv2 + p
(E + p)v

 , (44)

where we have to add the equation of state for a γ-law gas

E =
p

γ − 1
+

1

2
ρ(u2 + v2). (45)

12
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The jacobian matrix A′1(U) has the four eigenvalues

a1 = u− c, a2 = a3 = u, a4 = u+ c.

As in one dimension, the sound speed is c =
√
γp/ρ. The eigenvalues in the y-direction

are similar, with the roles of u and v reversed.

4.1 A mach 3 wind tunnel with a step

This example is a classical test example, which has been proven to be useful for a large
number of numerical schemes. A very complete presentation can be found in the paper
of Woodward and Colella11.

The test case describes a Mach 3 flow in a wind tunnel. The tunnel is 1 length unit
high and 3 length units long. The step is 0.2 length units high and is located 0.6 length
units from the left-hand end of the tunnel. The walls are reflective.

At the left, we impose a supersonic inflow boundary condition, while at the right side
we impose an outgoing condition. Initially the wind tunnel is filled with a gamma-law gas,
with γ = 1.4, which everywhere has density 1.4, pressure 1.0, x-velocity 3.0 and y-velocity
0.0.

On the boundary we impose reflecting boundary condition that is

−→u · −→n = 0.

We use four different schemes, all constructed on the four velocities model and the upwind
(Godunov) flux. Every solution is displayed with 30 isolines at time t=3.5.

The first-order scheme (figure 1) gives naturally the least accuracy, but the Mach stem
is present.

With the the second-order scheme (figure 2), the shocks are thinner but a numerical
instability is evident near the bottom wall, and behind the Mach stem.

In order to improve the previous scheme, where the velocities are the same in each cell,
we fixed these velocities by cell. The result is clearly better (figure 3), This scheme gives
a more accurate reprensation of the general shape and position of the shocks .

The last scheme (figure 4) is the same as the previous combined with a second-order
in time Runge -Kutta scheme. The results are quite similar.

4.2 Double mach reflection of a strong shock

This test describes the reflection of a planar Mach shock in air from a wedge. The
setup is of a Mach 10 shock which initially makes a 60 degrees angle with a reflecting
wall. The undisturbed air ahead of the shock has a density of 1.4 and pressure of 1.0.
The computational domain is [0, 4]× [0, 1] and the reflecting wall lies along the bottom of
the domain, beginning at x = 1/6. See Woodward and Colella11 for more precision about
this case.
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For this test-case we use three different schemes constructed with the four velocities
and the upwind flux.

First, the first-order scheme (figure 5) gives the least accurate results. The jet formed
by the double Mach reflection is unresolved. The strong shocks are too large.

The second scheme is the second-order scheme with velocities fixed by cells (figure 6).
The results are superior to those of first-order. The jet is resolved and the weak shock is
better decribed. However there are some unphysical structures.

The third scheme is the same as the previous combined with a second-order in time
Runge-Kutta scheme (figure 7). The results are better, the shocks are thinner and the
jet is quite well described. However the weak shock generated at the kink in the main
reflected shock is quite broad.

5 CONCLUSIONS

The kinetic models (3) offer an alternative to the Godunov approach for the construc-
tion of numerical approximations of hyperbolic systems of conservation laws. The higher
order extension in space and in time is easy and this approach is very flexible with regard
to the choice of the underlying kinetic model as well as to the one of the discretisation
parameters.

In the scalar case, the convergence is proved. We have performed numerical experiments
on 2D Euler system with unstructured grids. The chosen kinetic model is as simple as
possible, and the implementation needs for minimal information on the spectral properties
of the jacobian of the fluxes, namely their spectral ray. We observe nevertheless that
the numerical results are qualitatively very satisfying: all the essential structures of the
solutions are present.

Other choices of the maxwellian function may need for more precise information and
lead also to more accurate results but in all cases one has just to solve linear transport
equations.

References
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Figure 1: Density order 1 t=3.5
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Figure 2: Density order 2 t=3.5

Figure 3: Density order 2 local t=3.5

Figure 4: Density order 2 rk2 local t=3.5

Figure 5: Density order 1 T=0.2s
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Figure 6: Density order 2 local T=0.2s

Figure 7: Density order 2 rk2 local T=0.2s
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