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Abstract. Flows found in well drilling processes are much more complex than the flows 
often studied, as Taylor-Couette and Taylor-Couette-Poiseuille flows, because there are 
other additional characteristics, for instance: eccentric movement determined by the 
interaction of internal and external flows and fluids with changeable viscosity due the 
stress rate (non Newtonian fluid). In this context, a project was initiated in order to 
develop a computational tool to analyze flows associated with the drilling technology in 
deep waters using the immersed boundary method (IBM) with physic virtual model  o 
represent the fixed and moving channels. This paper presents the first three-
dimensional results of application of IBM with PVM methodology to two simplified 
drilling problems with non-Newtonian fluids: Taylor-Couette flow and eccentric Taylor-
Couette flow. Two non-Newtonian models were implemented, the power-law model and 
the Carreau-Yasuda model. The finite volume method is applied with a staggered 
Eulerian grid and second order temporal-spatial schemes were used. The governing 
equations were solved with a fractional time-step method. Initially, the validation was 
performed for laminar Hagen-Poiseuille flow by comparing with analytical solution. 
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1 INTRODUCTION 
 

Flows found in well drilling processes are much more complex than the flows often 
studied, as Taylor-Couette and Taylor-Couette-Poiseuille flows, because there are other 
additional characteristics, for instance: eccentric movement determined by the 
interaction of internal and external flows and fluids with changeable viscosity due the 
stress rate (non-Newtonian fluid). In this context, a project was initiated in order to 
develop a computational tool to analyse flows associated with the drilling technology in 
deep waters using the immersed boundary method (IBM)1 with physic virtual model 
(PVM)2 to represent the solid structures that defines to drilling system.  

In referred project, A first step has been completed, which was developed a 
numerical code for three-dimensional flow analysis of Newtonian, isothermal and single 
phase using the methodology of large eddy simulation SGE3 for the treatment of flow 
transition to turbulence and turbulent, coupled with the methodology immersed 
boundary MFI, which allows to model and treat numerically the presence of bodies 
immersed in static and in motion. Initially, was validated the numerical code base4, in 
Cartesian coordinates and without IBM; soon, were made applications for simplified 
flows associated with drilling engineering considering static and moving interface5. In 
these work, Padilla et al. presents the first results of three-dimensional internal flows, 
using IBM with PVM, which are an application to simplified drilling problems: Taylor-
Couette flow, Taylor-Couette spiral flow and eccentric Taylor-Couette flow.   

The present work include new implementations, preliminary tests and qualitative 
validation performed with the purpose of increasing the functionality of computational 
tool under development, characterized by application of conventional numerical 
methods combined with relatively new techniques. Continuing the developments in this 
second stage, new implementations were realized in order to enable the analysis of non-
Newtonian flows. 

 

2 MATHEMATICAL FORMULATION AND METHODOLOGY 
Precedent developments precedents4,5 represent the dynamics of Newtonian flows, 

isothermal and incompressible, through of conservation of mass and balance of 
momentum equations. In this approach, the Navier-Stokes equations become modified, 
in order to represent the Newtonian and non-Newtonian flows, then the generalized 
Newtonian fluid equations is given by: 
 

. 0ru =  ∇ (1)
 

.( ) .ρ ρ+ ∇ = −∇ +∇
∂

( )η∂ ⎡ ⎤∇ +∇ +⎣ ⎦

r rrr r rTu u u fuu p
t

 (2)

 
u  and p  represent the velocity and pressure fields, ρ  and η  is the fluid density and 

the called viscosity function and f  is the Eulerian force field.  The additional term f  
of eq. (2), of the immersed boundary method, represent the solid interface present in the 
flow, which is equivalent to force exercised for the fluid on the interface. Evidently, this 
interface is virtual and must represent the physical boundary condition for solid surface 
static or moving. According IBM, the flow field is solved in an Eulerian domain and the 
virtual interface is solved in a Lagrangean domain, where the coupling of domains is 
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realized with the force field f . The Eulerian force field is obtained through of the 
distribution of Lagrangean force, which is evaluated using the PVM2.        

The viscosity function, which depends of the strain rate, should be modeled to close 
the equations system that represents the problem. Therefore, the power-law7 and 
Carreau-Yasuda8 models are used.  The first model evaluates the viscosity with the 
expression 1 n = k Sη − , where  is consistency coefficient and  is the flow behavior 
index or power-law exponent. The expression of Carreau-Yasuda model, 

k n

( )  ( 1−a n )  /( ) ]η η η λ+ a
o  = S[1η∞ ∞− − , depends of more predefined parameters, where oη  

is the zero shear rate viscosity, η∞  is the infinite shear rate viscosity, λ is a parameter 
with units of time and  is a dimensionless parameter.  a

The governing equations were discretised following the finite volume method9 with 
staggered grid on Cartesian coordinate system and temporal and spatial second order of 
approximation. The pressure-velocity coupling was realized using the fractional steps 
method10, where the fluctuating pressure field was solved iteratively with the Strongly 
Implicit Procedure11.     

 

3 RESULTDS  
Simulations were performed with the purpose of confirm the correct implementation 

of the models and for validate the numerical code. Therefore, the Taylor-Couette flows 
with several configurations have been carried out.     

The geometric configuration associated with the problem is defined by the gap, 
distance between the surfaces of the inner and outer cylindrical channels of radius  
and 

iR

oR  and axial length aL . The inner surface has anticlockwise rotational velocity ω . 
In eccentric configuration appear the eccentric radius  and the eccentric rotational 
velocity 

exR
ωex . The dimensionless parameter these problem, Taylor number, is defined 

as12 ( )ω ηc= −i e iR RTa R , where ηc  is the characterist viscosity. For simulations, the 
following definitions were realized: , iR oR , aL , exR = 0.125, 0.4, 0.4, 0.05 , m ωex = 
4π -1s ; parameters for the power-law model13, =0,221 k nPa.s , =0,704; parameters 
for the Carreau-Yasuda model13,14, 

n
,η ∞o =0,004, 0,0001 , Pa.s λ =0,1 , =2 e 

=0,704; Eulerian grid of 42x42x24 (
s a

n , ,x y z ). 
      

 
(a) (b) 

Figure 1. Temporal distribution of kinematic viscosity for Newtonian and non-Newtonian flows; (a) 
concentric configuration, (b) eccentric configuration. 
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Numerical probes located inside of the domain, as can be seen from Fig. 1, enable to 
monitor the temporal develop of the flow, for instance through of the kinematic 
viscosity.  In the temporal distribution for concentric configuration (Fig. 1a), there are 
some important features of the non-Newtonian flows, such as, the Taylor-Couette flow 
with both models (Power-law and Carreau-Yasuda) reach stable steady just before the 4 

, as well as, that the local variations of viscosity are more intense with power-law 
model. On the other hand, the temporal distribution for the eccentric configuration (Fig. 
1b, with power-law model) presents variations of the viscosity to reach regime with 
fixed eccentricity (in the position of Fig. 4a), for three values of Ta , from 4  the rapid 
changes correspond to the two complete cycles of circular motion with variable 
eccentricity around the axis of the outer channel.   

s

s

 

 
(a) (b) 

Figure 2. Vector velocities field and kinematic viscosity, power-law model and concentric configuration; 
(a) Ta =120, (b) =140.    Ta

 
All simulated cases, using concentric configuration, revealed the presence of Taylor 

vortices, showing fields of velocity components similar to the Newtonian flows5,15. The 
Taylor vortices appear in stable regime, which as the Ta  increases become more intense 
(higher velocity vectors, as observed in Fig. 2) and the vortex centers are displaced to 
approach more two adjacent vortex pairs, that are counter- rotating, but also to distance 
from near the inner surface is shorter. When compared with results from Newtonian 
flow, Table 1, the Taylor vortices show always shorter distances between their centers, 
as well as, between the vortex centers and the surface of the inner channel. The 
localization of the vortex centers as function of Ta , for Newtonian flow, is influenced 
basically by inertia effects, already in non-Newtonian flow is influenced by inertia 
effects and effects arising from the variable viscosity, as shown in Figs. 3 and 4. 

 

Ta =100 Left vortice Right vortice 
r m[ ] z m[ ] r m[ ] z [ m ] 

Newtonian 0,259 0,220 0,259 0,386 
Carreau-Yasuda 0,253 0,225 0,253 0,379 

Power-law 0,247 0,229 0,247 0,376 
 

Table 1. Vortex centers localization for Newtonian and non-Newtonian flows. 
 
Figure 2 shows the pseudoplastic flow for Ta = 120 and 140, where the kinematic 

viscosity decreases with increasing strain rate, characteristic behavior when n  is less 
than unity (one can notice same behavior for Carreau-Yasuda model, see Fig. 3).  
Distribution of viscosity has smaller values from near the surface of inner channel and 
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higher near the outer surface, in intermediate region there is the influence of radial flow 
between the vortices. It is this distribution that explains the displacement of the vortex 
centers in relation to the vortices in Newtonian flow. 

 

 
 

 
(a) (b) 

Figure 3. Flows in concentric configurations, Carreau-Yasuda model; (a) kinematic viscosity, (b) velocity 
vectors and strain rate.   

 
Ta  Left vortice Right vórtice 

r m[ ] z [ ]m r m[ ] z [ m ] 
100 0,253 0,225 0,253 0,379 
120 0,255 0,229 0,255 0,375 
150 0,259 0,231 0,259 0,373 

 

Table 2. Vortex centers localization for non-Newtonian flows, using Carreau-Yasuda model. 
 

The Taylor vortices predict with Carreau-Yasuda model, as Ta increases, maintains 
the same performance observed as when used for power-law model. The vortex centers 
ex flow of Carreau-Yasuda models (Table 2) have an intermediate position between the 
localization of the vortex centers for Newtonian flows and non-Newtonian flows with 
power-law model (Table 1), because to differences in magnitude of the kinematic 
viscosity and shear rate fields, as observed in Fig. 3. 

An illustrative temporal sequence of the results with Carreau-Yasuda model is shown 
in Fig. 4, for eccentric configuration, where the instantaneous velocity iso-surfaces, that 
represent the counter-rotating structures, deform along a tangential direction as function 
of the space annular reduction, effects of inertia and the influence of non-Newtonian 
propierties. 
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Figure 4. Instantaneous axial velocity iso-surfaces for Ta =100, power-law model; (a) 4 s , (b) 4.1 s  , 
(c) 4.25 , (d) 4.35 .    s s

 

4 CONCLUSIONS  
Were present results of non-Newtonian flows simulations inside concentric and 

eccentric annular channels using power-law and Carreau-Yasuda models. The results of 
all the considered flows showed the presence of Taylor vortices, which characterizes 
such as Taylor-Couette flows. Thus, the results are physically consistent. The viscosity 
and shear rate field, among other features of the flows, agree with references. Therefore, 
the numerical code can be considered qualitatively validated. On the other hand, 
confirms the ability of IBM for represent stationary and moving interfaces.  
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