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Abstract. In many practical situations, laminar-turbulent transition occurs at lower
Reynolds numbers than those predicted by the classical linear stability theory. This pro-
cess, called transient growth, is observed when the boundary layer is subjected to intense
external disturbances such as high free-stream turbulence level or large three-dimensional
surface imperfections. In such cases, perturbations in the laminar region take the form
of streamwise elongated structures, commonly named streaks or Klebanoff modes, which
may be strongly amplified resulting in an early "Bypass" transition. In this paper, a semi
empirical model has been developed for the prediction of three-dimensional roughness in-
duced transition. It is based on the transient growth theory and coupled with a "Bypass"
transition criterion. This model has first been validated through a comparison with exper-
imental data for a tripped transition on an ONERA airfoil. In a second step, the model
has been confronted to experimental correlations : in particular, compressibility effects
such as Mach number and wall temperature influences have been investigated.

1



O. Vermeersch∗, D. Arnal†

1 Introduction
Many experiments have demonstrated that roughness elements could have a deep im-

pact on the laminar-turbulent transition process. Many surface imperfections (such as
rivets, insects ...) are unavoidable. So it is necessary to estimate their effects on the
stability of the boundary layer. Roughness elements have a dual-influence on the flow.
First, they modify the mean flow and have an effect on its stability properties. Sec-
ondly, they can introduce small perturbations inside the boundary layer : they act on
the receptivity process which is a key stage for stability studies. It has been shown that
two-dimensional surface imperfections can be analysed with the linear stability theory :
the transition location moves upstream towards the surface default for increasing height
of steps or gaps. Physically, two-dimensional defaults strongly amplify the unstable TS
waves [3]. Numerically, this problem is solved increasing the value of the N factor by a
quantity ∆N depending on the height of the surface imperfection [14, 28].

Nonetheless for three-dimensional protuberances, the transition mechanism seems to
be different. Reshotko highlights the fact that attempts to find a TS explanation for
three-dimensional roughness, both discrete and distributed, have failed [15]. Indeed, con-
trary to two-dimensional steps for which an height increase leads to an earlier transition
breakdown, for three-dimensional roughness elements, there is a critical height below
which the transition location keeps unchanged. When this critical value is exceeded the
transition is triggered at an abscissa close to the roughness element location. Van Driest
and Blumer [22] studied the effect of three-dimensional roughness elements (spheres) on
boundary layer transition on cones. They deduced a relationship for the effective height
corresponding to the transition tripping depending on the displacement thickness and on
the external Mach number. In the same way, von Doenhoff and Braslow [6, 8] have corre-
lated experimental data and showed that transition occurred when the Reynolds number
based on the roughness height Rkk reached a threshold : this value depending on the ratio
between the diameter and the height of the roughness. Acarlar and Smith [1] have shown
that an isolated roughness element induces an horseshoe vortex whose legs consist in two
counter-rotating stationary vortices. Optimal perturbation theory [2, 12, 18] has pointed
out that the most amplified perturbations inside both incompressible and compressible
boundary layer were also created by stationary streamwise vortices. It is the "Lift-up
effect" introduced by Landahl [11] : a vortex superimposed to the boundary layer shear
pushes up low speed particles from the wall to the top of the boundary layer, and pulls
down high speed particles towards the wall leading to a spanwise alternation of backward
and streamwise jet streaky structures called the Klebanoff modes [10]. Klebanoff modes
can undergo a ’transient growth’ process meaning that the amplitude of the streaks can
be heavily amplified. If the energy of the Klebanoff modes significantly raises, an early
laminar turbulent transition can be triggered : this is the so-called Bypass, a term intro-
duced by Morkovin [13], meaning that the natural transition process, driven by the TS
waves, has been short-circuited. Transient growth is an attractive mechanism to consider
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with respect to roughness induced transition [15].
As a matter of fact, Fransson et al. [9] have observed a transient amplification of the
longitudinal velocity fluctuation behind an array of roughness elements. The streamwise
velocity fluctuation clearly showed a transient amplification for the fundamental mode
corresponding to the roughness array periodicity. Fransson also noted that the streaks
induced by the roughness were suboptimal ones. This may be due to the fact that vortices
don’t match with the ones predicted by optimal perturbation theory and are closer to the
wall. White et al. [25, 27] performed many experiments of roughness induced transient
growth. They found out that the higher harmonics λ0/3 and λ0/4 have transient am-
plification just aft the element and that the amplification of the fundamental spanwise
wavenumber perturbation started downstream. A striking characteristic is that Fransson
obtained a positive u′-fluctuation in the centerline of the roughness whereas White ob-
served a negative one. The discrepancy has been explained by Tumin and Reshotko [20] :
using bi-orthogonal decomposition, they showed that behind a hump, there was a deficit
velocity region, called ’wake region’, surrounded by the legs of the horseshoe vortex : if
the magnitude of the vortices is high enough the wake region may be filled in and can-
celled by the wash motion induced by the vortices and the sign of the u′-fluctuation may
be switched over. We can think that the larger the roughness is, the more extended the
wake region would be. So, the topology of the flow behind a roughness default is not only
linked to the height but also depends on the diameter (or in the same way on the shape)
of the roughness element.
This paper aims at presenting a model, based on transient growth theory, to compute the
amplification of Klebanoff modes behind a three-dimensional roughness element. This
model is coupled with a criterion in order to predict the early roughness induced transi-
tion. In the first section the numerical model will be introduced. Then it will be calibrated
and compared to experimental data. The influence of compressibility, wall temperature
and Mach number, effects on the roughness induced transition will be then analysed
comparing our numerical results to existing empirical correlations.
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2 Description of the Model
2.1 Equations

If the amplitude of the streaks is too high, their influence on the mean flow cannot be
neglected. A natural approach consists in applying the boundary layer turbulent equations
to describe the laminar zone, even though the fully turbulent state has not been reached
yet. Total quantities (velocities, pressure and temperature) are split into a mean part and
a fluctuating one :

Q = Q̃+ q′ (1)

In order to make the equation dimensionless, typical length and velocity scales are intro-
duced. We know that subcritical roughness induce streaky streamwise elongated struc-
tures : therefore, a typical scale of the geometry L (for instance the length of the flat plate
or the chord of the wing) is used to normalize the streamwise coordinate. In the wall nor-
mal direction, a typical boundary layer thickness δ = L/

√
ReL is applied to characterize

the diffusion process. The continuity equation, satisfied by the Klebanoff modes implies
that if u′ is in order of U∞, v′ = O(U∞/

√
ReL). These scales were introduced by Prandtl

to study laminar boundary layers. These assumptions for two-dimensional incompressible
boundary layers lead to the following system of equations :

Ũx + Ṽy = 0 (2a)

Ũ Ũx + Ṽ Ṽy = UeUex + νŨyy + u′u′x + u′v′y (2b)

u′t +
(
Ũu′

)
x

+ Ṽ u′y + v′Ũy = ν
(
u′yy + u′zz

)
(2c)

The terms u′u′x and u′v′y describe the influence of the streaks on the mean flow. The
Klebanoff modes consist in u′-fluctuations and verify the equation (2c). For compressible
flows, two similar equations, one for the mean temperature and one for its fluctuation,
can be developed. In order to close the system (2) in the laminar region, the wall normal
velocity fluctuation v′ has to be modelled. This aims at expressing the "Lift-up" effect in
accordance with the fact that a wall normal velocity perturbation in a shear flow brings
about the emergence and the amplification of streamwise velocity fluctuations. Owing
to the Prandtl scales, all dimensionless equations are parabolic in nature. So if the wall
normal velocity is modelled, u′ can be computed by a marching numerical procedure
using the values of the mean flow at the previous upstream station. So the averaged
equation (2b) can be solved taking into account the terms which describe the influence
of the streaks on the mean flow. The key stage now, is to model the wall normal velocity
disturbance induced by the roughness element.
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2.2 Wall normal velocity fluctuation modelling
2.2.1 Fransson experiment

Fransson et al. [9] performed streaks hot wire measurements behind an array of cylin-
ders. Experiments were performed at four different free stream velocities U∞ = 5, 6, 7
and 8 [m/s] in order to control the amplitude of the streaks changing the ratio k/δ which
varied between 2.24 and 2.84. Hot wire measurements have clearly shown that the stream-
wise velocity fluctuation inside the boundary layer underwent a transient amplification as
illustrated by the symbols of the figure 1(a). In this figure, Fransson et al. have used a
non dimensional X coordinate, given by relation (3), and found out an universal streaks
behaviour.

X =
(
β∗
βopt

)2

· ν · 1
Uinf
· x (3)

The relation implies that at X = 1, the spanwise wavenumber matches with the optimal
one β = βopt = 0.45 [2, 12]. They computed the optimal disturbance which corresponded
with the most amplified streak at Xf = 1 ; the corresponding curve is the dashed line on
figure 1(a) : discrepancies between experiment and optimal perturbation theory (OPT)
have been justified by the fact that the cylinders should induce sub-optimal initial dis-
turbances closer to the wall. Therefore, Fransson et al. computed an artificial initial
perturbation by compressing the wall normal coordinate y by a factor c : for c = 0.78, ie.
an initial disturbance closer to the wall, the numerical result is in good agreement with
the measurements (solid line on figure 1(a)).

Here we propose another approach : we have calculated the initial disturbance which
maximises the amplitude of induced streaks at the station Xf = 2. This also provides
a good agreement with experimental data as illustrated by the dash-dotted line on fig-
ure 1(a). The evolution of the corresponding wall normal velocity fluctuation is presented
on figure 1(b) : v′-fluctuation amplitude is decaying exponentially in the streamwise di-
rection.

2.2.2 v’ profile

To model the wall normal fluctuating velocity profile in the boundary layer thickness
we will use the same function as the one proposed by Biau [5] for the transient growth
induced by free-stream turbulence. This function is continuously increasing from the wall
to the boundary layer edge, and may not match with the wall normal velocity fluctuation
profile really induced by roughness elements. Nonetheless, the goal is to impose a small
disturbance in the wall normal direction able to create a lift-up effect and to lead to the
formation of Klebanoff modes.

g(y) =


y2e−(2π/δ99)·y

maxy |y2e−(2π/δ99)·y|
if y ≤ δ99

cst if y > δ99
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Figure 1: Calibration on the Fransson experiment [9]

Previous works concerning the modelling of transient growth induced by free-stream tur-
bulence have been performed [5, 24] : in this context, the amplitude of v′ had been natu-
rally chosen proportional to the free-stream turbulence. For roughness induced transient
growth, we suppose that the amplitude of the streaks is linked to the roughness height.
The question is to know if this dependence is linear or not. Reshotko and Tumin [16] have
recovered the evolution of the transition Reynolds number induced by surface defaults in
ballistic range experiment, assuming that the fluctuations were directly proportional to
the height of the roughness. The present authors have in a first attempt use this assump-
tion to model the transition amplification of streaks induced by a protuberance [23].

On the contrary, White and Ergin [26] have shown that the amplitude of the modes
λ0/3 and λ0/4 was proportional to the Reynolds number based on the height of the
roughness : v′ ∝ Rkk ∝ k2. Direct numerical simulations, performed by Choudhari [7],
have confirmed these results for a Reynolds number range between 75 < Rkk < 250. In
the present paper we assume that the amplitude depends on the Reynolds number Rkk.
Besides, optimal perturbation theory has revealed that v′ was decaying exponentially (see
figure 1(b)). Therefore, we propose the following relationship for v′ :

v′

Ue
= A1 ·Rkk · e(−A2·β0·

x−x0
k ) · g(y) (4)

The constant A2 is given by the optimal theory and corresponds to the slope of the v′
evolution on figure 1(b) : A2 = 2 · 10−3. The exponential formulation is a function of
β0 = 2π/λ0 : physically, this means that for high spanwise wavenumber, ie. λ0 � 1,
which corresponds to tightened vortices, the longitudinal dissipation will be higher. On
the contrary, extended vortices will tend to propagate further downstream inside the
boundary layer. The value of A1 is fixed by calibration on a reference experimental case,
which will be described in the following section 3.2.
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2.3 Bypass transition Criterion
Determination of the transition location is important to determine the boundary layer

properties. Indeed, it determines the streamwise length of the region where the boundary
layer remains laminar and fixes the starting point of the turbulent area which develops
downstream. The computation of the transition location is usually based on a criterion
ie. a quantity resulting from the laminar boundary layer computation is compared to
a threshold value. Van Driest and Blumer [21] proposed a criterion based on the local
vorticity Reynolds number considering that the transition was triggered when the ratio
of the local inertial stress to local viscous shear reached a limiting value. Adapting their
approach to the transient growth phenomenon leads to the following relationship :

max
∀y

∣∣∣∣∣∣−ρ · u
′v′

µ∂U
∂y

∣∣∣∣∣∣ = C (5)

From a physical point of view, this relationship expresses the fact that transition occurs
only when the ratio between the driving term of streak formation u′v′ and the dissipative
one (ν×∂U/∂y) reaches a certain value. This criterion has been calibrated and successfully
applied to predict Bypass transition for boundary layers subjected to significant free
stream turbulence (FST ) level [5, 24]. Even though the receptivity process induced by
surface defaults is different from the FST one, we keep the same transition threshold
C = 0.65.
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Figure 2: Boundary layer thicknesses and spatial evolution of the amplitude of the fluctuations. U∞ =
10 [m/s]. The roughness element is located at x0 = 0.2 [m] and the diameter is d = 5 [mm].

3 Numerical results
3.1 Incompressible flow on a flat plate

The first computation has been carried out for a transition induced by a roughness
element located on a flat plate submitted to an incompressible flow. The protuberance is
located at x0 = 0.2 [m], has a diameter of d = 5 [mm] and the free-stream velocity is fixed
to U∞ = 10 [m/s]. The height of the roughness element is progressively increased up to
the critical value for which the transition criterion (5) is verified. For this configuration
the critical height is kcrit = 860 [µm] ie. is the order of magnitude of the displacement
thickness as represented on figure 2(a). The fluctuations of the normal and streamwise
velocities are represented on figure 2(b). We can see that our modelling induces a maxi-
mum for the v′ fluctuation (given by the relationship (4)) at the roughness location. Then
v′ is exponentially decreasing but forces by "Lift-up" effect, numerically represented by
equation (2c), the emergence and the transient amplification of u′ (red line on figure 2(b)).
The longitudinal velocity fluctuation reaches a maximum around 8% of the external ve-
locity at x ≈ 0.28 [m]. Besides, the maximum value of u′ is by a factor 10 higher than
the amplitude of v′. On the figures 3, the amplitude of the Klebanoff modes and the
corresponding value of the criterion for various roughness heights are represented. The
criterion u′v′/(νdU/dy) = 0.65 is verified for kcrit = 860 [m] as illustrated on figure 3(b).
The figure 3(a) also demonstrates that the u′ amplification is restricted to a limited re-
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Figure 3: Spatial evolution of the streamwise velocity and the criteria as a function of the roughness
height. The red line corresponds to the critical height : kcrit = 860 [µm]. The arrow indicates increasing
k from 820 [µm] to 900 [µm] by 20 [µm] step.

gion just downstream of the protuberance before the viscous decay occurs. The distance
where the criterion is increasing is even more restricted (figure 3(b)). Thus if the Bypass
transition has to happen, it will be triggered close to the roughness location.

3.2 Comparison with experimental data
A set of experiments on both natural and tripped transition has been performed by

Seraudie et al. [17] on the upper side of an Onera-D airfoil. The geometry of the profile is
plotted on figure 4 with the corresponding velocity distribution for a zero angle of attack
and a free-stream velocity U∞ = 35 [m/s]. The upper side of the profile is covered by an
heating skin to modify the wall temperature from the adiabatic temperature Tad = 300 [K]
to Tw = 340 [K]. The transition position is determined using infra red thermography
technique. Measurements demonstrate that in the case of natural transition (smooth
surface) a wall heating has a strong destabilizing effect moving up the transition location
towards the leading edge as illustrated by the two pictures of figure 5(a). The tripping
of the transition is made using glass bead with diameter of d = 0.2 or 0.3 [mm] placed at
10% or 20% of chord from the leading edge : the corresponding locations are specified by
the vertical arrows of the figure 4. For each configuration, two measurements have been
performed corresponding to the two distinct wall temperatures Tw = Tad = 300 [K] and
Tw = 340 [K]. The test section velocity is increased up to determine the critical velocity
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Figure 4: Upper side of the Onera-D profile and velocity distribution for zero angle of attack

corresponding to the transition onset : the experimental accuracy concerning the critical
velocity is around ∆U0 ≈ 2.5 [m/s].

The v′ modelling, ie. the constant A1 = 3.6 × 10−5, has been calibrated taking as
reference the tripping velocity for a 0.2 [mm] bead placed at 10% chord for an adiabatic
wall. This reference configuration is pointed out by the arrow on figure 6(a). For the
highest height k = 0.3 [mm], the numerical critical velocity is over evaluated compared
to the experiment. The simulation recovers the moderate stabilizing effect of a wall heat-
ing : for Tw = 340 [K], numerical results correspond to the green line and are consistent
with the measurements. Since heating destabilizes TS instabilities, this stabilizing effect,
illustrated on figure 5(b), is a characteristic feature of Bypass transition triggered by
Klebanoff modes [4, 19] and provides some evidence for a possible transient growth ex-
planation for roughness induced transition. When the glass spheres are moved away from
the leading edge, up to x0 = 0.07 [m], the tripping velocities are higher than for the case
x0 = 0.035 [m]. This is due to the fact that when the bead moves downstream, the ratio
k/δ becomes weaker and the boundary layer "sees" a smaller roughness element : the ex-
ternal velocity has to be increased to trigger transition. For the tallest bead, k = 0.3[mm],
the numerical modelling still over estimates the critical velocity. Nonetheless, the order
of magnitude of U0, in the light of the measurement accuracy, keeps correct.

3.3 Comparison with experimental correlation
In the past many experiments have been performed dealing with transition induced by

three-dimensional isolated surface imperfections. Van Driest and Blumer [22] studied the
effect of spheres placed on a 10o angle cone at a supersonic velocity M = 2.71. Using
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(a) Natural transition position. (b) Roughness tripped transition position.

Figure 5: Thermography visualisations of the transition position. The top pictures correspond to a wall
temperature Tw = 300 [K] whereas the bottom ones to Tw = 340 [K]. The red arrows represent the
transition position evolution due to a wall heating.
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Figure 6: Triggering of the transition by roughness elements on the Onera-D airfoil. Roughness elements
are located at x0 = 0.035 [m] and 0.07 [m]. Measurements have been performed for two distinct wall
temperatures Tw = 300 [K] (red) and Tw = 340 [K] (green). The lines correspond to the numerical results
and the symbols to the measurements [17].
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data obtained for other Mach numbers, they established a relationship for the critical
roughness height given by :

k

δ1
= 32.4×

√
1 + 0.2×M2

e ×
(
Ue · δ1

νe

)−1/2

(6)

where δ1 and Me are the displacement thickness and the external Mach number at the
roughness location. Van Driest and Blumer’s correlation has been deduced for spherical
surface defaults ie. roughness elements characterized by a specific ratio between the height
k and the diameter d around 1.

Von Doenhoff and Braslow [6, 8] have gathered flight experimental data and have shown
that the Reynolds number Rkk, given by the relation (7), was a relevant parameter for
the roughness induced transition.

Rkk = ρk · Uk · k
µk

(7)

Uk, ρk and µk respectively represent the velocity, the density and the viscosity for the
undisturbed boundary layer at y = k. Experiments have shown that the critical value of
the Reynolds number corresponding to the transition onset depended on the ratio d/k.
Data gathered and used by von Doenhoff and Braslow are plotted on figure 9(a) and
defined the hatched area of figure 9(b).

First of all, we have studied the influence of the roughness location on the critical height.
This computation has been carried out for a flat plate with Ue = 10 [m/s] for three wall
temperatures : Tw = 193, 293 and 393 [K]. Our numerical results are represented by
the symbols on the figure 7 and the solid lines correspond to the van Driest and Blumer
criteria (6). As expected, for a fixed wall temperature, the critical height increases when
the sphere is moved away from the leading edge. Moreover, we recover the fact that a
wall cooling (Tw = 193 [K]) has a destabilizing effect : the transition is triggered for
smaller roughness elements. When the temperature is raised compared to the adiabatic
temperature, the height of the surface default has to be increased to trigger transition.
Whatever the wall temperature, the present model gives coherent results compared to the
van Driest and Blumer correlation.

The effect of Mach number has then been analysed. The results are plotted on fig-
ure 8(a) where the red line represents the van Driest and Blumer criteria and the symbols
the numerical results. All the results are obtained for fixed total pressure and tempera-
ture : Pi = 105 [Pa] and Ti = 333 [K]. The roughness element is located at x0 = 0.2 [m].
First of all, in the subsonic range, when the velocity is increased from M = 0 to M = 0.5,
the critical height rapidly decreases. From M = 0.5 to M = 1, the critical height is still
decreasing but the slope is weak ; past M = 1, the critical height starts increasing.

On figure 8(b), the critical height of the roughness elements has been plotted as a
function of the wall temperature for two subsonic Mach numbers M = 0.1 and M = 0.5.
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Figure 9: Critical value of Rkk corresponding to the transition onset as a function of the ratio d/k

For the two Mach numbers, the stabilizing (respectively destabilizing) effect of a wall
heating (cooling) is recovered. We can note a small discrepancy between the numerical
result and the van Driest and Blumer correlation for M = 0.1 and Tw/Tad = 0.25. In
the same way as the figure 8(a) in the subsonic region, we can see that increasing the
Mach number from 0.1 to 0.5 has a destabilizing effect. Considering transition induced
by spherical (ie. d/k ≈ 1), the present model provides coherent results in close agreement
with the van Driest and Blumer correlation.

The influence of the specific aspect d/k has then been analysed and compared to the
von Doenhoff and Braslow criteria. The academic case of a flat plate is still considered.
The diameter of the roughness element is fixed to d = 1 [mm] and the critical velocity
is searched as a function of the ratio d/k. The corresponding Reynolds numbers Rkk

provided by the model have been plotted on figure 9. These Reynolds numbers were
obtained for x0/c = 0.1. One more time, the numerical values of the Reynolds numbers
corresponding to the transition onset match with von Doenhoff and Braslow correlation :
in particular, the evolution of the critical Reynolds number Rkk ∝ (d/k)(−2/5) is recovered
as illustrated on figure 9(a).
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4 Conclusion
In this paper, the early transition induced by isolated three-dimensional roughness

elements has been investigated. A model, dedicated to boundary layers developing on
walls characterized by surface imperfections has been introduced. This model is based on
transient growth theory ie. on the production of streaks (u′ fluctuations) induced by a wall
normal velocity fluctuation (v′) according to the "Lift-up" effect. The wall normal velocity
fluctuation has been modelled assuming that the receptivity process was non-linear. A
Bypass transition criterion has then been introduced in order to predict the boundary layer
breakdown induced by three-dimensional roughness elements. This modelling provides
results in close agreement with the van Driest and Blumer correlation and demonstrates
a coherent sensitivity to free-stream Mach number. Moreover, the stabilizing effect of
wall heating is well recovered compared both to van Driest and Blumer’s correlation and
measurements. Studying the influence of the specific ratio d/k, the numerical critical
Reynolds numbers based on the height of the roughness Rkk are in the range provided by
the von Doenhoff and Braslow criteria. Therefore, transient amplification of Klebanoff
modes appears, at least partly, as a convenient explanation for the early transition due
to three-dimensional surface imperfections.
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