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Abstract. The purpose of this work is to develop a methodology that achieves high order
spatial discretization for compressible aerodynamic flows based on the spectral finite volume
method for hyperbolic conservation laws. High order methods are necessary on the analysis
of complex flows to reduce the number of mesh elements one would otherwise need if using
traditional second-order schemes. In other words, high order methods can potentially
achieve a higher level of accuracy than low order ones given the same computational
resources. The spectral finite volume method was developed as an alternative to k-exact
high order schemes, ENO/WENO and discontinuous Galerkin methods. Its main objective
is to allow the implementation of a simpler and more efficient scheme, while still achieving
high order spatial accuracy. The 2-D Euler equations are solved numerically in a finite
volume, cell centered context on unstructured meshes. An implicit time march algorithm
is employed to advance the solution to steady-state. The treatment of discontinuities is
also discussed. Several applications are performed in order to assess the method capability,
which is compared to data available in the literature and also compared to results from an
weighted essentially non-oscillatory (WENO) scheme. The latter comparison data can
also be used to assess the present method computational performance
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1 INTRODUCTION

Over the past several years, the Computational Aerodynamics Laboratory of Insti-
tuto de Aeronáutica e Espaço (IAE) has been developing CFD solvers for two and three
dimensional systems3,14. One research area of the development effort is aimed at the
implementation of high-order methods suitable for problems of interest to the Institute,
i.e., external high-speed aerodynamics. Some upwind schemes such as the van Leer flux
vector splitting scheme18, the Liou AUSM+ flux vector splitting scheme9 and the Roe
flux difference splitting scheme13 were implemented and tested for second-order accuracy
with a MUSCL reconstruction1. However, the nominally second-order schemes presented
results with an order of accuracy smaller than the expected in the solutions for unstruc-
tured grids2. Aside from this fact, it is well known that total variation diminishing (TVD)
schemes have their order of accuracy reduced to first order in the presence of discontinu-
ities due to the effect of limiters.

This observation has motivated the group to study and to implement essentially non-
oscillatory (ENO) and weighted essentially non-oscillatory (WENO) schemes in the past23.
However, as the intrinsic reconstruction model of these schemes relies on gathering neigh-
boring cells for polynomial reconstructions for each cell at each time step, both classes
of methods were found to be very demanding on computational resources for resolution
orders greater than three, in 2-D, or anything greater than 2nd order, in 3-D. This fact
motivated the consideration of the spectral finite volume method (SFV), as proposed by
Wang and co-workers11,16,19–22, as a more efficient alternative. Such method is expected
to perform better than ENO and WENO schemes, compared to the overall cost of the
simulation, since it differs on the reconstruction model applied and it is currently extended
up to 4th-order accuracy in the present work. The SFV method is already in use by the
authors and, previously, numerical results have been published4. Although the expect
order of accuracy is obtained for the 2nd, 3rd and 4th order SFV methods, a significant
deterioration in convergence rate for the fourth order simulations is observed, especially
in the presence of shock waves. Hence, it is expected that such behavior can be overcome
by the use of an implicit time march algorithm.

The numerical solver is currently implemented for the solution of the 2-D Euler equa-
tions in a cell centered finite volume context for triangular meshes, with a lower upper
symmetric Gauss-Seidel (LU-SGS) scheme for time integration. The paper, as here or-
ganized, presents the theoretical formulation of the spatial and temporal discretization
methods for the Euler equations. The reconstruction process of the high-order polyno-
mial is described next. Afterwards, the flux limiting formulation is presented followed by
the numerical results and conclusions.
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2 THEORETICAL FORMULATION

2.1 Governing Equations

In the present work, the 2-D Euler equations are solved in their integral form as

∂

∂t

∫
V

QdV +

∫
V

(∇ · ~P )dV = 0 , (1)

where ~P = Eı̂+ F ̂. The application of the divergence theorem to Eq. (1) yields

∂

∂t

∫
V

QdV +

∫
S

(~P · ~n)dS = 0 . (2)

The vector of conserved variables, Q, and the convective flux vectors, E and F , are given
by

Q =


ρ
ρu
ρv
et

 , E =


ρu

ρu2 + p
ρuv

(et + p)u

 , F =


ρv
ρuv

ρv2 + p
(et + p)v

 . (3)

The system is closed by the equation of state for a perfect gas

p = (γ − 1)

[
et −

1

2
ρ(u2 + v2)

]
, (4)

where the ratio of specific heats, γ, is set as 1.4 for all computations in this work. The
flux Jacobian matrix in the ~n = (nx, ny) face-normal direction can be written as

B = nx
∂E

∂Q
+ ny

∂F

∂Q
. (5)

The B matrix has four real eigenvalues λ1 = λ2 = vn, λ3 = vn + a, λ4 = vn − a, and a
complete set of right eigenvectors (r1, r2, r3, r4), where vn = unx + vny and a is the speed
of sound. Let R be the matrix composed of these right eigenvectors, then the Jacobian
matrix, B, can be diagonalized as

R−1BR = Λ, (6)

where Λ is the diagonal matrix containing the eigenvalues,

Λ = diag(vn, vn, vn + a, vn − a). (7)

In the finite volume context, Eq. (2) can be rewritten for the i-th control volume as

∂Qi

∂t
= − 1

Vi

∫
Si

(~P · ~n)dS , (8)

where Qi is the cell averaged value of Q at time t and Vi is the volume, or area in 2-D,
on the i-th control volume.
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2.2 Spatial Discretization

The spatial discretization process determines a k-th order discrete approximation to
the integral in the right-hand side of Eq. (8). In order to solve it numerically, the com-
putational domain, Ω, with proper initial and boundary conditions, is discretized into N
non-overlapping triangles, the spectral volumes (SVs), such that

Ω =
N⋃

i=1

SVi. (9)

One should observe that the spectral volumes could be composed by any type of polygon,
given that it is possible to decompose its bounding edges into a finite number of line
segments ΓK , such that

Si =
⋃

ΓK . (10)

In the present paper, however, the authors assume that the computational mesh is always
composed of triangular elements. Hence, although the theoretical formulation is presented
for the general case, the actual SV partition schemes are only implemented for triangular
grids.

The boundary integral in Eq. (8) can be further discretized into the convective operator
form

C(Qi) ≡
∫

Si

(~P · ~n)dS =
K∑

r=1

∫
Ar

(~P · ~n)dS, (11)

where K is the number of faces, or edges in 2-D, of Si, and Ar represents the r− th edge
of the SV. Given the fact that ~n is constant for each line segment, the integration on the
right side of Eq. (11) can be performed numerically with a k− th order accurate Gaussian
quadrature formula∫

Ar

(~P · ~n)dS =
K∑

r=1

J∑
q=1

wrq
~P (Q(xrq, yrq)) · ~nrAr +O(Arh

k). (12)

where (xrq, yrq) and wrq are, respectively, the Gaussian points and the weights on the r-th
edge of SVi, J = integer((k + 1)/2) is the number of quadrature points required on the
r − th edge, and h will be defined in the forthcoming discussion. For the second-order
schemes, one Gaussian point is used in the integration. Given the coordinates of the end
points of the element edge, z1 and z2, one can obtain the Gaussian point as the middle
point of the segment connecting the two end points, G1 = 1

2
(z1 + z2). For this case,

the weight is w1 = 1. For the third and fourth order schemes, two Gaussian points are
necessary along each line segment. Their values are given by

G1 =

√
3 + 1

2
√

3
z1 +

(
1−
√

3 + 1

2
√

3

)
z2 and G2 =

√
3 + 1

2
√

3
z2 +

(
1−
√

3 + 1

2
√

3

)
z1, (13)
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and the respective weights, w1 and w2, are set as w1 = w2 = 1
2
. Using the method described

above, one can compute values of Qi for instant t for each SV. From these averaged values,
it is possible to reconstruct polynomials that represent the conserved variables, ρ, ρu, ρv
and et. Due to the discontinuity of the reconstructed values of the conserved variables
over SV boundaries, one must use a numerical flux function to approximate the flux values
on the cell boundaries.

The above procedures follow exactly the standard finite volume method. For a given
order of spatial accuracy, k, for Eq. (11), using the SFV method, each SVi element must
have at least

m =
k(k + 1)

2
(14)

degrees of freedom (DOFs). This corresponds to the number of control volumes that
SVi shall be partitioned into. If one denotes by Ci,j the j-th control volume of SVi, the
cell-averaged conservative variables, q, at time t, for Ci,j are computed as

qi,j(t) =
1

Vi,j

∫
Ci,j

q(x, y, t)dxdy, (15)

where Vi,j is the volume of Ci,j. Once the cell-averaged conservative variables, or DOFs,
are available for all CV s within SVi, a polynomial, pi(x, y) ∈ P k−1, with degree k − 1,
can be reconstructed to approximate the q(x, y) function inside SVi, i.e.,

pi(x, y) = q(x, y) +O(hk−1), (x, y) ∈ SVi, (16)

where h represents the maximum edge length of all CVs within SVi. The polynomial
reconstruction process is discussed in details in the following section. For now, it is
sufficient to say that this high-order reconstruction is used to update the cell-averaged
state variables at the next time step for all the CVs within the computational domain.
Note that this polynomial approximation is valid within SVi and some numerical flux
coupling is necessary across SV boundaries.

Integrating Eq. (8) in Ci,j, one can obtain the integral form for the CV averaged mean
state variable time evolution

dqi,j

dt
+

1

Vi,j

K∑
r=1

∫
Ar

(f · ~n)dS = 0, (17)

where f represents the E and F fluxes, K is the number of edges of Ci,j and Ar represents
the r − th edge of the CV. The numerical integration can be performed with a k − th
order accurate Gaussian quadrature formulation, similarly to the one for the SV elements
in Eq. (12).

As previously stated, the flux integration across SV boundaries involves two discontin-
uous states, to the left and to the right of the edge. This flux computation can be carried
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out using an exact or approximate Riemann solver, or even a flux splitting procedure,
which can be written in the form

f(q(xrq, yrq)) · ~nr ≈ fRiemann(qL(xrq, yrq), qR(xrq, yrq), ~nr), (18)

where qL is the conservative variable vector obtained by the pi polynomial applied at the
(xrq, yrq) coordinates and qR is the same vector obtained with the pnb polynomial in the
same coordinates of the edge. Note that the nb subscript represents the element to the
right of the edge, whereas the i subscript denotes the CV to its left. As the numerical
flux integration in the present paper is based on one of the forms of a Riemann solver,
this is the mechanism which introduces the upwind and artificial dissipation effects into
the method, making it stable and accurate. In this work, the authors have used the Roe
flux difference splitting method13 to compute the numerical flux, i.e.,

fRiemann = froe(qL, qR, ~n) =
1

2

[
f(qL) + f(qR)−

∣∣B∣∣ (qR − qL)
]
, (19)

where
∣∣B∣∣ is Roe’s dissipation matrix computed in the direction normal to the edges as∣∣B∣∣ = R

∣∣Λ∣∣R−1. (20)

Here,
∣∣Λ∣∣ is the diagonal matrix composed of the absolute values of the eigenvalues of the

Jacobian matrix, as defined in Eq. (7), evaluated using the Roe averages.
Finally, one ends up with the semi-discrete SFV scheme for updating the DOFs at

control volumes, which can be written as

dqi,j

dt
= − 1

Vi,j

K∑
r=1

J∑
q=1

wrqfRiemann(qL(xrq, yrq), qR(xrq, yrq), ~nr)Ar. (21)

where the right hand side of Eq. (21) is the equivalent convective operator, C(qi,j), for
the j-th control volume of SVi. It is worth mentioning that some edges of the CVs,
resulting from the partition of the SVs, lie inside the SV element in the region where the
polynomial is continuous. For such edges, there is no need to compute the numerical flux,
as described above. Instead, one uses analytical formulas for the flux computation, i.e.,
without numerical dissipation.

2.3 Temporal Discretization

The convergence behavior of high-order methods, such as the SFV method, is generally
poor with explicit time marching approaches. In order to obtain the steady state solution
of the flow from an initial condition, a relaxation scheme is necessary. The approach
typically used in the present research group has been to resort to explicit, multi-stage,
Runge Kutta time-stepping methods. The main advantages of such an approach are
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that it is easy to implement and the memory requirements are quite modest. Hence,
the previous “production” version of the code used a 3-stage TVD Runge-Kutta scheme
for time integration23. However, adequate solution convergence characteristics, especially
for the higher-order implementations, dictate that an implicit time integrator should be
implemented. Therefore, an implicit LU-SGS scheme is implemented in the context of
the present work.

Equation (2) can be recast in the semi-discrete form as

Vi
∂qi
∂t

= −Ri (22)

where Ri is the right-hand side residual and it tends to zero as the simulation converges
to a steady-state solution. Using Euler implicit time-integration, Eq. (22) can be written
in discrete form as

Vi
δqn

i

∆t
= −Rn+1

i (23)

where ∆t is the time increment and δqn = qn+1−qn. The above equation can be linearized
in time as

Vi
δqn

i

∆t
= −Rn

i −
∂Rn

i

∂q
δqn

i . (24)

The term ∂R/∂q represents the Jacobian matrix. Writing the equation for all elements,
one obtains the delta form of the backward Euler scheme

Aδq = R (25)

where

A =
V

∆t
I +

∂Rn

∂q
(26)

and I is the identity matrix.
In order to reduce the number of non-zero entries in the Jacobian matrix and to sim-

plify the linearization process, only a first-order representation of the numerical fluxes is
linearized. This results in the fact that the graph of the sparse matrix is identical to the
graph of the unstructured mesh. Hence, the Jacobian matrix entries can be computed
and stored over a loop on the mesh edges. Therefore, the residual operator can be written
as

Ri(qi, qj, ~nij) =
1

2
[f(qi, ~nij) + f(qj, ~nij)− |λij|(qj − qi)] (27)

for an edge that shares volume i and j. A scalar dissipation model is used,

|λij| = |~vij · ~nij|+ aij (28)

where ~nij is the unit vector normal to the edge, ~vij is the velocity vector normal to the edge
and a is the speed of sound. One should note that the dissipation on the flux function is
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approximated by the Jacobian matrix spectral radius. The linearization of Eq. (27) yields

∂Ri

∂qi
=

1

2
(J(qi) + |λij| I )

∂Ri

∂qj
=

1

2
(J(qj)− |λij| I )

(29)

where J = ∂F/∂q is the Jacobian of the inviscid flux vector.
As stated before, using an edge-based data structure, the Jacobian matrix is stored in

lower, upper and diagonal components, which are computed as

L =
1

2
[−J(qj, ~nij)− |λij| I ]

U =
1

2
[J(qj, ~nij)− |λij| I ]

D =
V

∆t
I +

∑
j

1

2
[J(qi, ~nij) + |λij| I ] .

(30)

Note that L,U and D represent the strict lower, upper and diagonal matrices, respectively.
Equation (25) represents a system of linear simultaneous algebraic equations that needs
to be solved at each time step. The iterative LU-SGS solution method is employed, along
with a mesh renumbering algorithm5, and the system is solved in two steps, a forward
and backward sweep

(D + L)δq∗ = R

(D + U)δq = Dδq∗.
(31)

It is found that the CPU cost of one LU-SGS step is very close, if not cheaper, than that
of the 3-stage Runge Kutta explicit step for these inviscid analyses.

3 SPECTRAL FINITE VOLUME RECONSTRUCTION

3.1 General Formulation

The evaluation of the conserved variables at the quadrature points is necessary in
order to perform the flux integration over the mesh element edges. These evaluations
can be achieved by reconstructing conserved variables in terms of some base functions
using the DOFs within a SV. The present work has carried out such reconstructions
using polynomial functions. Let Pm denote the space of m-th degree polynomials in two
dimensions. Then, the minimum dimension of the approximation space that allows Pm to
be complete is

Nm =
(m+ 1)(m+ 2)

2
. (32)
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In order to reconstruct q in Pm, it is necessary to partition the SV into Nm non-overlapping
CVs, such that

SVi =
Nm⋃
j=1

Ci,j. (33)

The reconstruction problem, for a given continuous function in SVi and a suitable parti-
tion, can be stated as finding pm ∈ Pm such that∫

Ci,j

pm(x, y)dS =

∫
Ci,j

q(x, y)dS. (34)

With a complete polynomial basis, el(x, y) ∈ Pm, it is possible to satisfy Eq. (34). Hence,
pm can be expressed as

pm =
Nm∑
l=1

blel(x, y), (35)

where e is the base function vector, [e1, · · · , eN ], and b is the reconstruction coefficient
vector, [b1, · · · , bN ]T . The substitution of Eq. (35) into Eq. (34) yields

1

Vi,j

Nm∑
l=1

bl

∫
Ci,j

el(x, y)dS = qi,j. (36)

If q denotes the [qi,1, · · · , qi,Nm]T column vector, Eq. (36) can be rewritten in matrix form
as

Sb = q, (37)

where the S reconstruction matrix is given by

S =


1

Vi,1

∫
Ci,1

e1(x, y)dS · · · 1
Vi,1

∫
Ci,1

eN(x, y)dS
... · · · ...

1
Vi,N

∫
Ci,N

e1(x, y)dS · · · 1
Vi,N

∫
Ci,N

eN(x, y)dS

 (38)

and, then, the reconstruction coefficients b can be obtained as

b = S−1q, (39)

provided that S is non-singular. With the substitution of Eq. (39) into Eq. (35), pm is,
then, expressed in terms of shape functions L = [L1, · · · , LN ], defined as L = eS−1, such
that one could write

pm =
Nm∑
j=1

Lj(x, y)qi,j = Lq. (40)

Equation (40) gives the value of the conserved state variable, q, at any point within the
SV and its boundaries, including the quadrature points, (xrq, yrq).
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Table 1: Polynomial base functions.

Reconstruction Order e
linear [ 1 x y ]

quadratic [ 1 x y x2 xy y2 ]
cubic [ 1 x y x2 xy y2 x3 x2y xy2 y3 ]

The major advantage of the SFV method is that the reconstruction process does not
need to be carried out for every mesh element SVi. One can compute these coefficients
as a pre-processing step and they do not change along the simulation. This is a major
difference when compared to methods such as ENO and WENO, for which every mesh
element has a different reconstruction process at each time step. The polynomial base
functions for the linear, quadratic and cubic reconstructions are listed in Table 1. Clearly,
the linear, quadratic and cubic polynomial reconstructions will yield, respectively, 2nd-,
3rd- and 4th-order spatial discretization numerical schemes.

3.2 Linear Reconstruction

For the linear SFV method reconstruction, m = 1, one needs to partition a SV in
three sub-elements, as in Eqs. (14) and (32) and use the base vector as defined in Table
1. The partition scheme is given for a standard element. The partition for this case is
uniquely defined. The structured aspect of the CVs within the SVs is used to determine
neighborhood information and generate the global connectivity data considering a hash
table search algorithm7.

The linear partition is presented in Fig. 1(a). It yields a total of 7 points, 9 edges (6 are
external edges and 3 are internal ones) and 9 quadrature points. The linear polynomial
for the SFV method depends only on the base functions and on the partition shape.
The integrals of the reconstruction matrix in Eq. (38) are obtained analytically10 for
fundamental shapes. The shape functions, in the sense of Eq. (40), are calculated and
stored in memory for the quadrature points, (xrq, yrq), of the standard element. Such
shape functions have the exact same value for the quadratures points of any other SV
of the mesh, provided they all have the same partition. There is one quadrature point
located at the middle of the every CV edge.

3.3 Quadratic Reconstruction

For the quadratic reconstruction, m = 2, one needs to partition a SV in six sub-elements
and use the base vector as defined in Table 1. The partition scheme is also given in this
work for a right triangle. The nodes of the partition are obtained in terms of barycentric
coordinates of the SV element nodes in the same manner as the linear partition. The
structured aspect of the CVs within the SVs is used to determine neighborhood infor-
mation and generate the connectivity table. The ghost creation process and edge-based
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data structure is the same as for the linear reconstruction case. The partition used in
this work is shown in Fig. 1(b). It has a total of 13 points, 18 edges (9 external edges
and 9 internal ones), 36 quadrature points and it has Lebesgue constant value of 3.075.
The shape functions, in the sense of Eq. (40), are obtained as in the linear partition.
The reader should note that, in this case, the base functions have six terms that shall be
integrated. Again, these terms are obtained exactly and kept in memory10. In this case,
two quadrature points are required per CV edge.

3.4 Cubic Reconstruction

For the cubic reconstruction, m = 3, one needs to partition the SV in ten sub-elements
and to use the base vector as defined in Table 1. The ghost creation process and edge-
based data structure is the same as for the linear and quadratic reconstruction cases.
As a matter of fact, the same algorithm utilized to perform these tasks can be applied
to higher order reconstructions. The partition used in this work is the improved cubic
partition17, presented in Fig. 1(c) and it has a total of 21 points, 30 edges (12 external
edges and 18 internal ones), 60 quadrature points and it has a Lebesgue constant value
of 4.2446. The shape functions, in the sense of Eq. (40), are obtained as in the linear
partition in a pre-processing step. As with the quadratic reconstruction, each CV edge
has two quadrature points4.

(a) (b) (c)

Figure 1: Triangular spectral volume partitions for (a) linear, (b) quadratic and (c) cubic reconstructions.

4 LIMITER FORMULATION

For the Euler equations, it is necessary to limit some reconstructed properties in order
to maintain stability and convergence of the simulation, if the resulting flowfield contains
discontinuities. The limiters are applied in each component of the primitive variable vector
(ρ, u, v, p)T , derived from the conserved variable vector evaluated at quadrature points.
For each CV, the following numerical monotonicity criterion is prescribed:

qmin
i,j ≤ qi,j(xrq, yrq) ≤ qmax

i,j , (41)
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where qmin
i,j and qmax

i,j are the minimum and maximum cell averaged property values among
all neighboring CVs that share a edge with Ci,j. If Eq. (41) is strictly enforced, the method
becomes TVD8. This method, however, is first-order accurate and it may compromise
the general accuracy of the solution. To maintain high-order accuracy away from discon-
tinuities, small oscillations are allowed in the simulation, as in TVB methods15. If one
expresses the reconstruction for the quadrature points as a difference with respect to the
cell averaged mean,

∆qrq = pi(xrq, yrq)− qi,j, (42)

then no limiting is necessary if |∆qrq| satisfies Eq. (41) for every quadrature point of the
CV edges. If it does not, then, the solution is limited for this CV and linearly reconstructed
as

qi,j(x, y) = qi,j + Φ∇qi,j · r, (43)

where ∇qi,j is the gradient at the CV centroid, and r is the position vector of the quadra-
ture point with regard to the CV centroid. The original high order polynomial in the CV
is used to compute the gradient, i.e.,

∇qi,j =

(
∂pi

∂x
,
∂pi

∂y

)
. (44)

The reconstructed property value from Eq. (43) may not satisfy Eq. (41) and, therefore, it
is limited by multiplying the increment in the CV average value by a scalar Φ ∈ [0, 1], that
can be computed following the general orientation of the literature, such that it satisfies
the monotonicity constraint. In this work, the superbee limiter is used6.

5 NUMERICAL RESULTS

The results presented here attempt to validate both the implementation of the data
structure, temporal integration, numerical stability and resolution of the SFV method.
The overall performance of the method is compared with that of a WENO scheme im-
plementation. For the presented results, density is made dimensionless with respect to
the free stream condition and pressure is made dimensionless with respect to the density
times the speed of sound squared. For the steady case simulations, the CFL number is
set as a constant value and the local time step is computed using the local grid spacing
and characteristic speeds. For both test cases, the CFL number is set to 1.0× 106.

All numerical simulations were carried out on a dual-core 1.6 GHz PC Intel64 archi-
tecture, with Linux OS. The code is written in Fortran 95 language and the Intel Fortran
compiler R©with optimization flags1 is used. For the performance comparisons which are
presented in this section, all residuals are normalized by the first iteration residue. More-
over, the L2 norm is used in all residuals here reported.

1Compiler flags: -O3 -assume buffered io -parallel
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5.1 Wedge Flow

The computation of the supersonic flow field past a wedge with half-angle θ = 10
deg is considered. The computational mesh has 816 nodes and 1504 volumes and it is
shown in Fig. 2, along with the density contours obtained with 4th-order SFV method.
For comparison purposes, the second, third and fourth order SFV methods were utilized
along with WENO schemes. The leading edge of the wedge is located at coordinates
x = 0.25 and y = 0.0. The computational domain is bounded along the bottom by the
wedge surface and by an outflow section before the leading edge. The inflow boundary is
located at the left and top of the domain, while the outflow boundary is located ahead
of the wedge and at the right of the domain. The analytical solution gives the change
in properties across the oblique shock as a function of the free stream Mach number and
shock angle, which is obtained from the θ − β − Mach relation. For this case, a free
stream Mach number of M1 = 5.0 was used, and the oblique shock angle β is obtained as
19.5 deg. For the analytical solution, the pressure ratio is p2/p1 ≈ 3.083 and the Mach
number past the shock wave is M2 ≈ 3.939. For these simulations the use of the limiter
was necessary in order to keep the high order reconstruction away from the shock wave.

The numerical solutions of the SFV method are in good agreement with the analytical
solution. In Fig. 3 we compare the numerical solutions of the SFV and WENO schemes,
in terms of pressure coefficient values, with the analytical one. Note that the SFV scheme
is the one that better approximates the jump in pressure on the leading edge. The
pressure ratio and Mach number after the shock wave for the fourth order SFV scheme
were computed as p2/p1 ≈ 3.047 and M2 ≈ 3.901. As expected, the fourth order SFV
scheme achieved results closer to the analytical one. Also, the Cp results for the second
and third order WENO solutions are very similar. On the other hand, only the SFV
method achieved a solution, for the fourth-order methods, because the 4th-order WENO
scheme diverged.

Figure 2: Supersonic wedge flow unstructured mesh with density distribution obtained with 4th order
SFV.
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Figure 3: Supersonic wedge flow analytical and numerical wall pressure coefficient distributions.

5.2 NACA 0012 Airfoil

For the NACA 0012 airfoil simulation, the mesh is shown in Fig. 4, along with the
Mach number contours. The mesh has 8414 elements and 4369 nodes. Flow conditions are
the same as in the experimental data12, that is, freestream Mach number of M∞ = 0.8 and
0 deg. angle-of-attack. Figure 5 shows the Cp plots of the numerical simulations for both
WENO and SFV methods of different orders. Their agreement with the experimental
data, in terms of shock position and pressure coefficient (Cp) values, is very reasonable.
The main difference between the methods occurs for the fourth order simulation where the
SFV method better approaches the experimental data and gives more consistent values
for Cp after the shock wave. For these simulations, the use of limiters is also necessary.

The Cp curves indicate that the SFV method captures the shock wave, over the airfoil,
usually with a single SV element in it, as shown in Fig. 6, which validates the limiter
formulation and the suitability of the method to our needs. The Cp distributions in the
post-shock region show that the influence of the limiter operator reduced the fourth order
scheme resolution. Also, the fourth order simulation of the WENO scheme presented
large oscillations along the airfoil chord, as seen in Fig. 6(c). This can be explained given
the fact that the cubic polynomial reconstruction process of the WENO scheme, which
involves neighbor data processing, is limited near boundaries and it must work with the
available data. Hence, it produces an oscillatory interpolation polynomial. It is important
to emphasize that the present computations are performed assuming inviscid flow. One
should observe, however, that the pressure rise across the shock wave, in the experimental
results, is spread over a larger region due to the presence of the boundary layer and the
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Figure 4: Mesh and Mach number visualization for 4th-order SFV numerical simulation of flow over
NACA 0012 airfoil (M∞ = 0.8).

consequent shock-boundary layer interaction that necessarily occurs in the experiment.
For the numerical solutions, the shock presents a sharper resolution, as one can expect
from an Euler solution.

The performance analysis is carried out for this test. The time for solution of the SFV
3rd order implicit and explicit methods can be seen in Fig. 7 along with the number of
iterations. For the explicit run, a CFL value of 0.2 was used. The total iteration number
is limited to thirty thousand iterations. Despite the relative low residual drop, for the
explicit simulation, the lift coefficient of the airfoil reached a steady value at about 10000
iterations. Next, a comparison of the implicit WENO and SFV schemes is presented for
the third order spatial resolution case. As one can observe in Fig. 8, the SFV method
is able to reduce the residual several orders, whereas the WENO case seems to stall the
convergence. Nevertheless, for both schemes, the lift coefficient plots show a constant, or
zero value for this case, after the first 500 iterations on the SFV scheme and after 1000
iterations for the WENO scheme.

The performance achieved on the third order case is carried over to the fourth order
simulation as numerical experimentation showed. However, as one should expect, for flows
with discontinuities such as the present test case, there is a small performance degradation
for the 4th-order scheme due to the limitation process. There are more limited control
volumes, which increases the overall cost of the method, since these elements must be
linearly reconstructed and, then, limited.
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(a) second order (b) third order

(c) fourth order

Figure 5: Experimental and numerical Cp distributions for NACA 0012 airfoil.

6 CONCLUSIONS

The second, third and fourth order spectral finite volume methods are successfully im-
plemented and validated with the proposed numerical tests. The method behavior for
resolution orders greater than second order is shown to be in good agreement with both
experimental and analytical data. Furthermore, the results obtained show that the current
method can yield solutions with the same or better quality, at a much lower computa-
tional resource usage, than other high order schemes, as demonstrated by the comparison
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(a) second order (b) third order (c) fourth order

Figure 6: Detail of shock region.

with computations performed with a WENO scheme. Further improvements in the SFV
method capabilities are achieved by addition of an implicit time march algorithm.

The method seems suitable for the aerospace applications of interest to IAE in the sense
that it is compact, given the fact that the stencil for polynomial reconstruction is always
known, geometrically flexible, by supporting unstructured meshes, and computationally
efficient.
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