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Abstract. We are concerned with the Barenblatt-Biott model in the theory of poroelas-
ticity. We derive a guaranteed estimate of the difference between exact and approximate
solutions expressed in a combined norm that encompasses errors for the pressure fields
computed from the diffusion part of the model and errors related to stresses (strains) of
the elastic part. Estimates do not contain generic (mesh-dependent) constants and are
valid for any conforming approximation of pressure and stress fields. This is a shortened
version of the joint paper [1] with J. M. Nordbotten (Bergen), T. Rahman (Bergen) and
S. I. Repin (St. Petersburg).

1 INTRODUCTION

A combination of the Barenblatt’s double-diffusion approach and Biot’s diffusion-
deformation theory leads to what we call the Barenblatt-Biot poroelastic model repre-
senting double diffusion in elastic porous media. It takes the form

-V - (Le(u)) + ayVpr +aaVpy = f(z,1),
apr — V- (kiVp) +aqV-a+k(pr —p2) = hi(z,t), (1.1)
copr — V- (koaVpa) + 0oV -+ k(pa —p1) = he(z,t),

u is the displacement of the solid skeleton and p; and p, are the fluid potentials in the
respective components. With the vector gradient operator V, the linear Green strain
tensor () writes

1
e(u) == 3 (Vu+ (Vu)"). (1.2)
The fourth-order elastic stiffness tensor I defines a stress tensor ¢ using the Hook’s law
o :=Le(u).

In general, the permeabilities k; and k; may be heterogeneous and anisotropic tensors,
which may be functions of the deformation. Herein, we will neglect this dependence and

1



Jan Valdman

only consider constant, scalar and homogeneous permeabilities. Constants «; and ao
measure changes of porosities due to an applied volumetric strain. Mathematical analysis
of this model based on the theory of implicit evolution equations in Hilbert spaces is
elaborated in [4].

Our focus in this paper is to derive guaranteed and computable bounds of approxima-
tion errors the static Barenblatt-Biot system

=V (Le(u)) + a1Vpr + aaVpy = f(x),
=V - (k1Vp1) + k(p1 — p2)
—V - (koVp2) + K(p2 —p1) = he

\
=
S

(1.3)

)
x),

which is considered in bounded connected domain  C R? with Lipschitz continuous
boundary I'.

2 VARIATIONAL FORMULATION OF THE DOUBLE DIFFUSION SYS-
TEM

Since the displacement u is only involved in the first equation of system (1.3), a double-
diffusion problem

—V - (k1Vp1) + k(p1 — p2) = ha(2), (2.1)
=V - (k2Vps) + K(p2 — p1) = ha(x)

is studied separately. It describes the steady flow of slightly compressible fluid in a
general heterogeneous medium consisting of two components. Henceforth, we consider
this problem with the Dirichlet boundary conditions p; = po = pr on I'. Let p be a
function with square summable coefficients that satisfies this boundary condition. It is
convenient to rewrite the problem in terms of new functions

PL:=p1—D, P2:=Dp2—D.
Then, a weak formulation of (2.1)-(2.2) leads to
Problem 1. Assume that (hy, hy) € L*(2,R?). Find p = (p1,p2) € H (2, R?), satisfying

the system of variational equalities

//ﬁVPl -Vai + /"i(Pl — p2)qy dx = /(h1(1’)ch — kiVp-Vaqy)de

) Q ) (2.3)
/k‘QVPz -VQqa + / k(p2 — p1)ge do = /(hz(ﬂf)% — kyVp-Vay) dx
) Q )

for all testing functions q = (q1,q2) € Ha(Q, R?).
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This problem can be represented in a general form (which also encompasses other,
more complicated models of porous media). For this purpose, we introduce the spaces

and the corresponding dual spaces
Q" = H(Q,R?, Y*:=L*Q R™). (2.5)

Hereafter Ly norms of all functions in €2 are denoted by ||-||o,. Duality pairings of (@, Q")
and (Y,Y™) are denoted by (-,-) and ((-,-)), respectively. Also, we introduce a bounded
linear operator A € £(Q,Y) and its adjoint operator A* € L(Y™*, Q*) by the relations

Aq:= (Vai, Vaz), A'Y* = (= divy}, —divys)”. (2.6)
The operators A and A* satisfy the relation representing integration by parts
(Y*,Aq)) = (A*Y*,q) forallY'eY™ qe€Q,
which can be written componentwise as

/(Yf Va1 +Y;-Vaq) de = — / (q1divY] 4+ q2divY3) dz, (2.7)
Q )

where q = (q1,¢2) and Y* = (Y7,Y3). Now Problem 1 can be represented in the form:
Find p € @ such that the equality

a(p,q) = l(q) (2.8)

holds for all q € ). The bilinear form a(-,-) and the linear form I(-) are defined as

a(p,q) = /(Apr(AAq)+p-IB%q) dx,

lq) = /(h -q— CAq) dz,
Q

A, B and C are matrices formed by material dependent constants kq, ks, ks,

L kl 0 L K —K L k1Vﬁ 0
w= (0 n) m= (0 ) o= (7 m)

and h is the right hand side vector
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Remark 1. 1f p is sufficiently regular (so that A*C belongs to Y*), then
I(q) = /(h~q—A*Cq)dm=/ﬂ-qdw,
Q Q

where

ﬁ L hl — div k’1V]5
T hg — div kQVﬁ '

It is easy to verify that (2.8) is the necessary condition for the minimizer of the following
convex variational problem.

Problem 2. Find p € Q satisfying

F(p) + G(Ap) = inf {F(q) + G(Aq)}, (2.9)
where

F:Q—TR, F(q) := %/q -Bqdz —l(q), (2.10)
and

G:Y—>R, G(Aq) := %/Aq: (AAq) dz. (2.11)

Theorem 1 (existence of unique solution). Assume that ki, ks > 0 and k > 0. Then,
there exists a unique solution p € Q) of Problem 2, which also represents the solution of
Problem 1.

Proof. This proof and all other proofs can be found in [1]. m

3 A POSTERIORI ERROR ESTIMATE OF THE DOUBLE DIFFUSION
SYSTEM

In this section, we derive guaranteed and directly computable bounds of the difference
between exact and approximate solutions. Our analysis is based upon a posteriori error
estimation methods suggested in [3, 5]. Following the chapters 6 and 7 in [3], first we
need to find explicit forms of dual functionals

F Q" =R,  F*(A'Y"):=sup{(AY*,q) — F(q)},

a9 (3.1)
G :Y" >R, G*(Y") := sup {((Y*,Aq)) — G(Aq)}.

AqeYy
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and the corresponding compound functionals

Dp:QxQ"—R, Dp(q,A*Y") := F(q) + F*(A*Y") — (A*Y", q) ,

3.2
Dg:Y xY" =R, Dg(Aq,Y") := G(Aq) + G*(Y*) — ((Y*,Aq)) . (32)
By the the sum of Dr and D¢, we obtain the functional error majorant
M(q,Y") := Dp(q, A*Y") + Dg(Aq, Y*), (3.3)
which provides a guaranteed upper bound of the error:
1
—a(p—q,p—q) < M(q,Y") forall Y"e€Y™. (3.4)

2

The majorant is fully computable and depends only on the approximation q € () and
arbitrary variable Y* € Y.

Lemma 1 (dual functionals). For ki, ks > 0 and k > 0, it holds

1

&) = 5 / AT Y de, (3.5)
Q
L [(A*Y* +h)2dx  if A*y7 + hy + A*ys + hy = 0,

FH(A*Y*) = ") ' ’ (3.6)
+00 otherwise,
where
Y= {5 3) €Y AY T+ by + A YS +hy =0 ace in Q). (3.7)

After the substitution of (3.5) and (3.6) in the definition (3.2), we obtain explicit
expressions for the compound functionals.

1
Dg(Aq, Y*) = §/A(Aq— ATY) : (Aq — ATNYY) da, (3.8)
Q
%ng-quJr ﬁg(A*Y* +h)?dz
Drp(q,A"Y") = if A*Y% +hy + AY5+ hy =0, (3.9)

+o00 otherwise.

According to (3.22), the sharpest bound of a(p — q,p — q) is provided by the estimate

1
Calp—q,p—q) < i )., .
;ap—a,p—a) < inf M(q,Y7) (3.10)

Since M(q,Y*) = +oo if Y* ¢ Y}*, we must restrict ourselves to arguments Y* € Y.
To construct an element of Y}", an exact equilibration procedure is required. Below, we
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show a way to avoid the constrain (3.7) by a special penalty term added to the functional
majorant. We define

Yy, ={(Y:,Y5) e Y A*YT + AY3 € LP(Q)} (3.11)
and note that Y} C Y}, (since hy, hy € L*(Q)). Further we decompose
with Y* € Y, and we extend the dual functionals D¢ and Dp by the new variable Y.
We rewrite (3.8) as
1 . .
Dg(Aq,Y") = 3 /A(Aq — A7) (Ag — AT do +
Q
. . 1 . .
+ /(Aq —AT'Y) (Y - Y do + 3 /A‘l(Y* —Y*) (Y = Y*)dx
Q Q
and use the inequality 2M; : My < Gy M, : My + ﬂilI\\/[[Q : M, valid for all matrices M, M,
and for all 3; > 0 to bound the middle term as
(Aq— A7MY*) - (Y — Y*) = AY2(Aq — A7'Y%) - AV2(Y* — )
1 « .
— AT (Y —Y*) (Y —Y*). (3.12)
26,

Obviously, the middle terms adds to the left and the right terms in Dg(Aq, Y*) above
and the modified compound functional reads

< %A(Aq — AT s (Aq— ATY) +

De(Aq, Y*, Y*) _— +251 /A(Aq — A7) s (Aq — A7) dx
| ¢ | (3.13)
- —1 xN7EY . x Nk
+(2+—261)/A (Y* = Y*) : (Y* = Y*)dz.

Q
It also contains a scalar factor #; > 0 that value can be chosen arbitrarily. Similar
technique is used to modify the compound functional Dr(q, A*Y*). For the second integral
in (3.9), we have

/(A*Y* +h)?da < (1+ ) /(A*\Sf* S h)?de (14 %) /(A*(Y* %)) da,

Q Q Q
where B > 0. Therefore, a modified dual functional reads

4k
Q Q

. 1 1 .
Di(q, AY", A°Y") =5 /Bq cqdz+ —(14 () /(A*Y* +h)?da

. . (3.14)

+lasdy /(A*(Y* —¥))2da.

Q
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By adding (3.13) and (3.14), we extend the functional majorant (3.3) to
M(q,Y*,Y*) := Dp(q, A*Y*, A*Y*) + Da(Aq, Y*, Y*),
in which arbitrary variables satisfy the constrain
(Y, V) € ¥y X Y.
Clearly, the original and extended majorants satisfy the inequality

1 * * U

(3.15)

(3.16)

for all Y* € Y., 01 > 0,82 > 0. This estimate is sharp in the sense that there are no
irremovable gaps in the inequalities. Indeed, if we set Y* = Y* = Ap and tend (; and s
to zero, then M (q, Y*, Y*) tends to M (q, Y*) (and even to the exact error %oz(p—q7 P—q),

of. (3.10)).

3.1 AN UPPER ESTIMATE OF M(q, Y*, Y*)

Let us denote Y* = (Y, Y3) and Y* = (Y, Y3) and consider a particular subspace

(Y, ¥*) e {V; x Vi, : AY  +hy =0,Y; =Y} ae. in Q}.
In this subspace, it holds (cf. (2.6))

/(A*(Y*—Y*))de:/(div(ﬁ?* YH) /dle* )2 d.

Q Q

Therefore, Dr(q, A*Y*,A*Y*) defined in (3.14) simplifies as Y*-independent

A 1 1 N
Dp(q,A*Y") = 2/IB%q qu+4 (1+ﬁg)/(A*Y*+h)2dx
Q Q
1 1

+—(1 )/(leY* hi)? dx

2
and only Y*-dependent functional in Dg(Aq, Y*, Y*) defined in (3.13) writes

/A‘l(Y* ST (Y = V) de = /k;I(Y; CYE) (Y- Y da
Q Q

(3.17)

(3.18)

(3.19)
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Lemma 2. Let us define a space
Vi, = {Y: € L*(Q)*: A*Y; +hy =0 a.e inQ}.
Then, for all YT € H(div; ), it holds

inf / HY}‘ -
YieYy,
Q

2

2 ~
de < C*||div ¥t + hy

where C' > 0 satisfies Friedrichs’ inequality [|wl| 2y < C'[|[Vwl|p2q) valid for all w €
H; ().

Application of Lemma 2 to (3.19) and the back substitution to (3.13) defines a Y*-
independent dual functional

. 1 . .
Da(Aq, YY) = + /A(Aq — A7V (Aq — ATIYY) da
Q
+ k—l(1 + L)(J2 divY: + b (3.20)
L2 2B L '
which provides an upper estimate of the quantity
erlf/i DG(Aqa Y 7Y )
Therefore, the sum of (3.18) and (3.20) defines a Y*-independent functional
Mg, 5,(q,Y") := Dp(q, A"Y*) + Dg(Aq, Y) (3.21)

that serves as an upper bound of M(q, Y*, Y*) and provides a computable estimate

1 . .
§a(p —q,p—q) < Mg, 5,(q,Y*) foral Y'eYy,. (3.22)
4 A POSTERIORI ERROR ESTIMATE FOR APPROXIMATIONS OF THE

COUPLED SYSTEM (1.1)

Assume that the fluid pressures p; and p, are resolved exactly and substituted to the
elasticity equation (cf. (1.1))

-V - (Le(u)) =f(z,t) + a1 Vp1 + a2 Vps.

Let v be an approximation of u (this problem is considered in the same domain ) as
the problem (2.1)-(2.2)). We define the Dirichlet boundary condition by a function uy €
H'(;R?) and assume

v € u + H}(Q;RY).
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Lemma 3. For every function 7 € Q := {0 € L*(Q;R¥*?) : divo € L*(Q; R?)} it holds

sym

[e(a=V)[lL.q < le(v) =L~ + C|divr +f — oy Vpr — a2 Vpallg, (4.1)

T”]L;Q

where the constant C' > 0 satisfies an inequality
Wl < Clle(wW)llL o  for all w € Hg(Q;RY). (4.2)

and the norm ||| is defined as |||} ., .= [Le : edx.
QO

Let q; and go be approximation of exact pressure fields p; and p, respectively. By
triangle inequalities, we obtain

|divr +f — a1 Vp — o Vpe||o < [|divT +f — a1 Va1 — o Vas||q
+[IV(pr —a)llg + [[V(p2 — a2)llg - (4:3)

Use (4.3) and square both parts of (4.1) to obtain

le@=V)llE.0 < ([Je(v) =Ll g
—l—C ||d1VT + f— a1Vq1 — CYQVC]QHQ (44)

+C[[V(pr — au)llg + C IV (p2 — a2)llg)*.
By the algebraic inequality
1 1 1
(a+b+c)? < (L4 B1+8) a®+(1+—+08) P+ (1+—+—) &
Ba G5 DBs

valid for all scalars a,b,c and for all 4, 35,3 > 0, inequality (4.4) and the following
inequality (3 is an arbitrary positive constant)

(I¥(pr = an)llg + IV (P2 — a2) )’

< (1+8) V01— a2+ (1 + ~) [ V(o2 — a2)[2

s
< max{ 1 —1;63, 1]51_@53} a(p—4q,p—q)
< zmax(* 0 ) Mo (@ T, (45)

Now we obtain the final estimate in terms of the coupled error norm

a(p—a.p—a) +lle(u— V) o < (1+ B+ ) [Je(v) — L7,

1 ~ A
+ (1 + ﬁ_ + ﬁﬁ) 02 HdiVT +f— a1Vq1 — Oéqug”?z +2C M/glyﬁg(q, Y*), (46)
4



Jan Valdman

where

~ 1 1 1+ 063 14+ 05
C:1+CQ(1—|——+—>max{ , }
Bs  DBe 3} ka3

This estimate holds for all 7 € @, Y+ e Y, and all 3y,..., 8 > 0.

Remark 2. Finally, we comment on that how this estimate can be used in practical compu-
tations. Assume that numerical solutions of the Barenblatt-Biot system (1.3) are obtained
on certain finite dimensional subspace generated by the mesh 7;,. We denote them q
and v;,. In the simplest case, we need to post-process the functions q; := Vq; and
7, := Le(vy) in such a way that their post-processed images q;, and 73, belong to @ and
Y., respectively. Then a guaranteed upper bound follows from (4.6) by direct substitu-
tion and optimization with respect to the parameters 3;,...,3s > 0. A sharper estimate
can be obtained if the majorant is further minimized with respect to q; and 75, with the
help of some direct minimization procedure (e.g., gradient descent). Another way may be
efficient if the problem is solved on a sequence of consequently refined meshes. In this case,
we can use the above described procedure (based on a relatively simple post-processing
procedure for q; and 75, but with one step retardation, i.e., averaging is performed on the
mesh hy but it is used in the error estimate for approximate solutions computed on the
mesh hy_q.
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