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Abstract. In this study, the unsteady aerodynamics of SD7003 airfoil undergoing 

“figure-of-eight” motions with vertical translation amplitudes of 0c (normal hover), 

0.5c and 1c is investigated numerically. The forces and vortex fields are compared at 

the same Reynolds number that is defined with respect to the maximum absolute 

velocity. Also the effect of the reduced frequency is investigated and it is found that in 

the meantime, decreasing reduced frequency and increasing Reynolds number does not 

alter the general force and vortex-field trends but increases the peaks in the 

aerodynamic forces for same motion. 
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1 INTRODUCTION 

The flapping flight has attracted biologists and physicists more than a century to be 

capable of understanding the nature’s choice and mimicking that choice for 

development of successful micro aerial vehicles. In spite of the remarkable interest on 

the topic, a precise theoretical and computational analysis is not available yet due to the 

complexity of the motion. This complexity could be simplified by using airfoils in pitch, 

plunge and ramp motions. Wang [1] showed that the two-dimensional analysis is a 

reliable tool for investigation of flapping flight by emphasizing the agreement of her 

results with the results of Hall et al. [2]. Freymuth [3] studied the thrust generation of a 

hovering airfoil and identified three types of motions; normal hovering mode, water 

treading mode and oblique mode. He showed that the vertical signature of hovering 

thrust is the reverse Karman vortex street with a character of jet stream. The thrust 

generation of a sinusoidally plunging airfoil in forward flight was first shown a century 

ago [4-5]. Pesavento et al. [6] solved the Navier-Stokes equations around a 2D ellipse 

and optimized the flapping motion that needs less power required than optimal steady 

flight. Rather than specific studies Lehmann [7], Platzer and Jones [8], Wang [9] and 

Sane [10] have offered reviews on flapping wing aerodynamics for different point of 

views. 

In this study, SD7003 airfoil undergoing “figure-of eight” and “normal hover” modes 

is investigated numerically. The non-dimensional vorticity contours are visualized and 

aerodynamic forces are calculated for different Reynolds numbers and reduced 

frequencies.   

2 METHOD 

2.1 Kinematics   

Three different kinematics such as “mode A”, “mode B” and “mode C” are 

considered. The “normal hover” mode, which is denoted as mode A in this study, is 

defined by Freymuth [3]. The “mode A” motion is defined as the superposition of 

unsteady variation of linear translation and angular rotation of an airfoil. Combining the 

vertical translation with the normal hover mode will result as “figure-of-eight motion”. 

The translation motion of the airfoil is defined as a Lissajous curve, which is the graph 

of a set of parametric equations. Moreover, the pitching motion is defined with respect 

to the quarter chord location having a pitching amplitude of . The pitching 

amplitude is adjusted to have 0° at the half of the linear translational motion in order not 

to have massive leading- and trailing edge vortices at this part of the flow-field. The 

only massive leading edge and trailing edge vortices are generated at the beginning and 

end of the strokes. Therefore, it will be easier to identify the vortices generated 

dominantly by vertical translational motion. The resulting kinematics is given by 

following equations: 

                                                                      (1) 

                                                                           (2) 

                                                (3) 

where  is circular frequency ( ), f is oscillation frequency, x and y are the 

linear and vertical coordinates of the quarter chord location of the airfoil,  is the pitch 

angle with respect to the horizontal axis and Y is the amplitude of vertical translation. 
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      The main purpose of this study is to investigate the effect of vertical translation 

amplitude (Y) to the hovering aerodynamics. To achieve this, three different values of Y 

is used in this study including normal hover mode (see Fig. 1). For the mode B motion, 

the vertical translation amplitude is Y=1/2 and for mode C the vertical translation 

amplitude Y is chosen to be 1. The resulting path of the airfoil for three modes of 

hovering is given in Fig. 1. 

 

 Figure 1: Position of the airfoil with time for mode A (left), mode B (middle) and mode C (right) 

2.2 Solver 

The two-dimensional, unsteady Navier-Stokes equations for the flow-field around 

SD7003 airfoil undergoing three different modes of hovering were solved via 

commercial CFD package Fluent 6.3. For the spatial discretization second-order upwind 

scheme is used. The hovering motion of the airfoil was modeled by using dynamic mesh 

feature of the code that is moving the whole grid as a rigid body and not deforming the 

grid. The dynamic mesh feature limits the unsteady formulation to the first order in 

time. 

2.3 Grid and Time-step Refinement  

The spatial and temporal sensitivity tests are performed to be sure that we have a grid 

and time-step independent solution. For grid sensitivity, two structured O-type grids 

with 199x100 and 399x200 elements are compared. These two grid domains are used to 

solve the flow-field around the airfoil undergoing “mode C” hovering and the resulting 

lift and drag coefficients are shown in Fig. 2. It is found that the grid domain with 

199x100 elements is fine enough to have grid independent solution. Same procedure for 

time-step refinement is also performed for = 200, 400 and 800 and found that 400 

time-steps per a period is sufficiently refined where T is the motion period and  is the 

time step.  

 
Figure 2: Time history of CL and CD with different grid domains (left) and with different time-steps 

(right) for Mode C hovering 
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3 RESULTS 

The periodicity in terms of forces, moments and vortex-field is achieved at the sixth 

period for all investigated cases but here we used the solutions of the 9
th

 period. The two 

important similarity parameters in regarding to the fluid dynamics of flapping motion 

are Reynolds number (Re) and reduced frequency (k) for which the definitions are given 

by eqns. (4-5): 

                                                                                (4) 

                                                             (5) 

In normal hover mode (mode A), the reference velocity is defined as maximum 

horizontal plunging velocity, . For “figure-of-eight” motion (“mode B” and 

“mode C”) maximum absolute velocity (  is taken into account for definitions of 

the Reynolds number and aerodynamic force coefficients. Reynolds number for “mode 

A”, “mode B” and “mode C” is taken as 1000. Moreover two additional cases (mode B2 

with Re=1120 and mode C2 with Re=1415) at constant reduced frequency, k=0.25, are 

also investigated. Figs. 3-5 show the non-dimensional vortex-fields for “mode A”, 

“mode B” and “mode C” respectively. The vorticity is non- dimensionalized with 

 and consequently, the results could be compared quantitatively.  

For “mode A”, the airfoil is moving with zero geometric angle of attack during at 

about 40% of its period and at these time interval we e generation of massive separation 

is not expected. At the beginning of the downstroke (t/T=8.0) a LEV, that is generated 

at the end of previous cycle (at t/T~7.95), is observed. The airfoil hits the LEV and the 

low pressure area sticks to the airfoil, resulting a decrease in lift up to t/T=8.15. After 

that instant until t/T=8.4 the airfoil translates without any separation and lift increases 

up to steady state limits. Due to the symmetry of the motion same process occurs during 

t/T=8.5 to t/T=9.0 with opposite rotating vortices. There is a perfect symmetry in lift 

and drag forces for two strokes. Hence it is observed that the asymmetry of airfoil has 

negligible effect on the flow-field for that motion. The “mode A” stands as a base for 

the comparative study.  

The vortex-field for “mode B” is shown in Fig.4 and the forces are shown in Fig. 6. 

In that motion, the amplitude of vertical translation is c/2 for which the horizontal 

translation amplitude is 2c. In that case, the perfect symmetry of the flow- field is lost 

due to the asymmetry of the airfoil which affects the vortex structures. At t/T=8.0 the 

onset of a LEV and TV could be observed in Fig. 4. Rather than “mode A”, this time 

airfoil does not hit the detached LEV and TV (at t/T=8.1) and so the lift coefficient has 

in an increasing trend. At the beginning of the downstroke (t/T=8.0) the high suction 

region on the lower surface results as drag in negative direction (to the left). In contrast, 

at the beginning of the upstroke (t/T=8.5) the newly generated vortices creates a high 

suction region on the upper surface which will result a positive drag (to the right). 

Different than “mode A” hovering, here at t/T= 8.0 and 8.5 y-velocity is at its maximum 

value of  and that velocity washes out the generated LEV and TV 

from the airfoil surface. This stretching phenomenon could be observed in Figs. 3-4 at 

instances t/T=8.0 and 8.5. 

Fig. 6 shows the vortex-field for “mode C” hovering for which the vertical 

translation amplitude is 1c.  At t/T=8.0 the detached LEV and TV structures are 

observed. These vortices are generated at t/T=7.7 and left the surface at t/T=7.8. The 

maximum horizontal velocity occurs at the middle of the strokes and with increasing x-

velocity at t/T=8.25 and 8.75 where the airfoil has its maximum lift coefficient.  
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Figure 3: Non-dimensional vorticity contours for one period of “mode A” hovering at Re=1000. Red 

areas denote positive vorticity (CCW swirling) and blue areas denote negative vorticity (CW swirling). 
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Figure 4: Non-dimensional vorticity contours for one period of “mode B” hovering at Re=1000. Red 

areas denote positive vorticity (CCW swirling) and blue areas denote negative vorticity (CW swirling). 
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Figure 5: Non-dimensional vorticity contours for one period of mode C hovering at Re=1000. Red 

areas denote positive vorticity (CCW swirling) and blue areas denote negative vorticity (CW swirling). 
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Moreover “mode C” hovering is the only case in this study for which the detachment 

of vortices is occurring at the middle of the strokes. A slight difference between two 

strokes is observed in forces and vortex-fields in this mode rather than having perfect 

symmetry. The peaks of drag forces are observed at the beginning of the upstroke 

(t/T=8.5) and the downstroke (t/T=8.0) with a value of Cd=1.6. Since the vertical 

velocity of mode C is double of the mode B, it is observed that the maximum Cd value 

is larger than the value achieved at “mode B”. 

The same study is performed for two additional cases (mode B2 and mode C2) for 

which the same chord and frequency with normal hover mode are selected. These cases 

are studied  to see what will be done if vertical motion is added to a normal hovering 

system without changing any other parameters. The resulting Reynolds numbers for 

mode B2 and mode C2 are Re=1120 and Re=1415 respectively.The resulting forces are 

compared with other cases in Fig. 6.  

Figure 6: Time histories of Cd (left) and Cl (right) for all hovering cases studied. The solid lines denote 

the cases at same Reynolds number of 1000. The dashed lines denote the cases with constant reduced 

frequency of 0.25. 

 

Figure 7: Time histories of Cm for all cases studied. The solid lines denote the cases at same 

Reynolds number of 1000. The dashed lines denote the cases with constant reduced frequency of 

0.25. 

The test cases “mode B2” and “mode C2” are also shown to represent the effects of 

Reynolds number to the “figure-of-eight” motion. The smaller viscous effect with 

increasing Reynolds number results in smaller vortex structures and greater peak values 

for hovering. The general trend for “mode B2” and “mode C2” are same with their 
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counterparts but with the increase of Reynolds number, the aerodynamic force’s peak 

values are increasing. This general trend could also be investigated for normal hover 

mode to ensure about the effect of Reynolds number on hovering aerodynamics. The 

mean of the force coefficients for three hovering modes are given in Table 1. All figure 

of eight motions have a favorable effect on the lift coefficient. 

 

 Mode A Mode B Mode C 

Mean CL 0.124 0.382 0.431 

Mean CD 0.010 -0.001 0.038 

Figure 6: Mean force coefficients of three hovering motions at the same Reynolds number (Re=1000). 

4 CONCLUSIONS  

The effect of vertical translation on hovering aerodynamics is investigated 

numerically for constant Reynolds number and reduced frequency.  The unsteady, 

laminar, incompressible Navier-Stokes equations are solved using a commercial 

pressure-based solver with dynamic mesh feature. Three different hovering modes are 

defined and the vortex-fields and instantaneous aerodynamic forces are visualized and 

compared. It is shown that with increasing Reynolds number for “figure-of-eight” 

motions, the aerodynamic force’s peaks are also increasing.  
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