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Abstract. The strive in aeronautical industry for more robust designs, requires CFD
simulations that also account for uncertainties inherently present in e.g. flow conditions
or geometries. In a recent EC project (NODESIM - CFD) different methodologies to deal
with such so - called non - deterministic flows have been considered. The polynomial
chaos (PC) approach, originally developed by Wiener [5], is a very promising approach. It
is based on a polynomial decomposition of the uncertain variables, where the uncertainty
is lumped in the polynomials and the unknown coefficients of the decomposition become
deterministic. Whereas PC is already well established in structural mechanics, its use in
CFD is quite recent. The original PC method is an intrusive approach in the sense that it
requires extensive modifications in existing, deterministic CFD codes. Within NODESIM
- CFD an intrusive approach was developed for compressible Navier - Stokes simulations
[1,2]. Alternatively non - intrusive approaches have been developed where standard CFD
codes can be used. They all require sampling but different approaches exist. In the present
context a probabilistic collocation approach is used [3,4]. In the present paper the intrusive
polynomial chaos method (IPCM) will be compared to the non - intrusive probabilistic
collocation methodology (NIPCM) for a 2D turbulent Navier - Stokes flow. The test case
is an RAE2822 airfoil at M = 0.729, angle of attack (AOA) = 2.79◦ and a Reynolds
number Re = 6.5×106. Uncertainties are imposed on the inlet Mach number and AOA.
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1 INTRODUCTION

Nowadays Computational Fluid Dynamics (CFD) has become an indispensable tool
in the design and development in many key sectors of economic life. Aiming at shorter
turnaround times from concept to market, new designs and prototypes are more and more
based on computer simulations. In a good design it is essential that the performance of the
product is only weakly sensible to varying conditions; e.g. the efficiency of a compressor
is only weakly affected by variations in inlet and outlet conditions or variations of the tip
clearance or the geometry. The only way to come to such so - called robust designs, is by
using non - deterministic CFD where the possible varying conditions are accounted for
directly in the simulation. Several methods exist to deal with these uncertainties. In the
present paper two non - deterministic approaches for CFD computation are used, based
on intrusive and non - intrusive polynomial chaos methods.

2 NON - DETERMINISTIC POLYNOMIAL CHAOS METHODS

Polynomial Chaos Methods (PCMs) represent one class of non - deterministic methods
which gained wide acceptance in the CFD community for propagation of the uncertain-
ties in numerical simulations, where the random quantities are subjected to a spectral
representation via a Polynomial Chaos expansion [7]. PCMs show interesting advantages
with respect to other non - deterministic methods. With respect to the perturbation
methods, PCMs can handle more general types of uncertainties while they seem to be
more computationally efficient as the basic Monte Carlo methods.

2.1 IPCM

The classical PC method is an intrusive methodology in the sense that the governing
equations are altered. This implies that, in order to use the PC methodology, the CFD
codes have to be modified. In some cases this can be a disadvantage e.g. for well validated
industrial CFD codes, where any extension has a risk of introducing errors but it can deal
with a sensible performance increment if used to compute with multiple uncertainties. The
Intrusive Polynomial Chaos Method is formulated in a probabilistic framework. The main
idea of the IPC methodology is the following. For every uncertainty in the formulation
of the mathematical model a new dimension is introduced and the solution is considered
dependent on these dimensions. A convergent expansion along these new dimensions is
sought in terms of orthogonal basis functions, whose coefficients are used to quantify
the uncertainty of the solution. The weighting function of the scalar products of the
polynomials corresponds to the PDF of the uncertain input parameters, which ensures
the exponential convergence of the stochastic solution. A Galerkin projection of the
deterministic equations on the PC space is used to derive equations determining the
coefficients of the PC decomposition of the solution.
Suppose ξk(θ)

∞
k=1 is a set of independent stochastic variables with a known distribution

that determines the stochastic input of the problem. Then the solution to the non -
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deterministic problem is sought in the form of the following expansion:

u(x
¯
, θ) = a0Γ0 +

∞∑
i1=1

ai1(x¯
)Γ1(ξi1(θ))+ (1)

∞∑
i1=1

i1∑
i2=1

ai1i2(x¯
)Γ2(ξi1(θ), ξi2(θ))+

∞∑
i1=1

i1∑
i2=1

i2∑
i2=1

ai1i2i3(x¯
)Γ3(ξi1(θ), ξi2(θ), ξi3(θ)) + ...

where Γp(ξ1(θ), ξ2(θ), ...ξn(θ)) is the Polynomial Chaos of order p. For computational pur-
poses, the generic PC representation (1) must be truncated. This is typically performed
by retaining in Eq. 1 all polynomials of order ≤ p. If a stochastic field is used as input,
its Karhunen - Loeve expansion must be truncated in order to end up with a finite set
of independent stochastic variables ξk(θ)

n
k=1. It is also convenient to introduce a one - to

- one mapping between the set of indices appearing in the truncated sum corresponding
to Eq. 1 and a set of ordered indices, and re - write the truncated sum in a single index
form:

u(x
¯
, θ) =

P∑
j=0

uj(x
¯
)Ψj (2)

where Ψj denotes the polynomials in single index notation. The total number of polyno-
mials is P + 1. The relation between P , the PC order p and the dimension n (number of
independent variables ξk) is given by the following formula:

P + 1 =
(p+ n)!

p!n!
(3)

All the polynomials in the above expansion are mutually orthogonal, i.e.

< ΨiΨj >=< Ψ2
i > δij (4)

with <> denoting inner product

< ΨiΨj >≡
∫
W (ξ)Ψi(ξ)Ψj(ξ)dξ (5)

where ξ = (ξ1, ξ2, ..., ξn) and W (ξ) is the weighting function. For the optimal convergence
of the PC expansion the weighting function W must be the same as the PDF of random
variables ξk. The Askey scheme [6] gives the optimal polynomials Ψi for different PDFs.

In order to determine the stochastic behavior of the solution process u(x
¯
, θ), one must

determine the deterministic coefficients uj in Eq. 2. In the full Polynomial Chaos method
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this is achieved through the Galerkin approach. Because polynomials Ψj are mutually
orthogonal, the coefficients uj satisfy the following relation:

uj =
〈Ψju〉〈

Ψ2
j

〉 (6)

Consider a stochastic process described by the following PDE cast in a generic form:

L(u(ξ), ξ) = 0 (7)

where ξ = (ξ1(θ), ξ2(θ), ...ξn(θ)). The resulting equations for uj are obtained by introduc-
ing Eq. 2 into Eq. 7 and taking Galerkin projections onto the truncated basis. This gives
P PDEs for determining the coefficients uj:〈

L

(
P∑
j=0

uj(x
¯
)Ψj, ξ

)
,Ψj

〉
= 0, j = 0, ...P (8)

For instance consider the x component of the momentum equation of the 1D compress-
ible Navier - Stokes equation:

∂ρu

∂t
+
∂ρu2

∂x
= −∂Π

∂x
+
∂τxx
∂x

(9)

where Π is pressure. Using the following expansions:

u(x, t, θ) =
P∑
j=0

uj(x, t)Ψj (10)

Π(x, t, θ) =
P∑
j=0

Πj(x, t)Ψj (11)

ρ(x, t, θ) =
P∑
j=0

ρj(x, t)Ψj (12)

the procedure described above leads to

P∑
i=0

P∑
j=0

Mijl
∂ρiuj
∂t

+
P∑
i=0

P∑
j=0

P∑
k=0

Lijkl
∂ρiujuk
∂x

= −∂Πl

∂x
+
∂ (τxx)l
∂x

, l = 0, ..., P (13)

with

Mijl =
〈ΨiΨjΨl〉
〈Ψ2

l 〉
(14)
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Lijkl =
〈ΨiΨjΨkΨl〉
〈Ψ2

l 〉
(15)

Formally the operational count of these sums are of O(P 3) and O(P 4), respectively.
However, due to the sparse nature of both tensors, the operation count is actually much
smaller. Still, the evaluation of the Galerkin projections of cubic term is very costly. One
can reduce the computational costs by applying the a pseudo - spectral approach. First,
the Galerkin projection of the momentum is evaluated as

(ρu)k =
P∑
i=0

P∑
j=0

Mijkρiuj (16)

Then the Galerkin projections of the cubic term are calculated as:

(ρu2)k =
P∑
i=0

P∑
j=0

Mijk(ρu)iuj (17)

This approach leads to a significant reduction in computation costs.

2.2 NIPCM

The non - intrusive Probabilistic Collocation method (NIPCM) starts with a polyno-
mial chaos expansion based on Lagrange polynomials. To compute the Galerkin projection
and to integrate the approximation to find the mean and variance, Gauss quadrature is
used. The use of Gauss quadrature results in a decoupled set of equations, which makes
the method non - intrusive. The choice of the weighting function for the Gauss quadrature
rule is very important. To assure spectral convergence, the weighting function has to be
equal to the probability density function on the uncertain input parameter.

Probabilistic Collocation expansion

The solution and each variable depending on the uncertain input parameter is expanded
as follows:

u(x, t, ω) =

Np∑
i=1

ui(x, t)hi (ξ(ω)) (18)

where the solution u(x, t, ω) is a function of space x and time t and the random event
ω ∈ Ω, and the number of collocation points Np. The complete probability space is
given by (Ω,F , P ), with Ω the set of outcomes, F ⊂ 2Ω the σ-algebra of events and
P : F → [0, 1] a probability measure. Furthermore, ui(x, t) is the solution u(x, t, ω) at
the collocation point ωi; hi is the Lagrange interpolating polynomial chaos corresponding
to the collocation point ωi; ξ is the random basis. The Lagrange interpolating polynomial
is a function in terms of the random variable ξ(ω), which is chosen such that the uncertain
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input parameter is a linear transformation of ξ(ω). The Lagrange interpolating polynomial
chaos is the polynomial chaos hi (ξ(ω)) that passes through the Np collocation points, with
hi (ξ(ωj)) = δij. When multiple uncertain parameters are present, the collocation points
are obtained from tensor products of one dimensional points. The number of collocation
points Np then becomes Np = (P +1)d, where P is the order of approximation and d then
dimension of the stochastic problem (i.e. number of uncertain parameters). To find the
suitable Gauss quadrature points and weights the procedure below is followed.

Computing Gaussian quadrature points with corresponding weights

A powerful method to compute Gaussian quadrature rules is by means of the Golub -
Welsch algorithm [8]. This algorithm requires the recurrence coefficients [9] of polynomials
which are orthogonal with respect to the weighting function of the integration. Spectral
convergence for arbitrary probability distributions is obtained when the polynomials are
orthogonal with respect to the probability density function of ξ, so w(ξ) = fξ(ξ)

[4]. The
required recurrence coefficients are computed using the discretized Stieltjes procedure [10],
which is a stable method for arbitrary distribution functions.

Orthogonal polynomials satisfy the following three - term recurrence relation:

Ψi+1(ξ) = (ξ − αi)Ψi(ξ)− βiΨi−1 i = 1, 2, . . . , Np

Ψ0(ξ) = 0, Ψ1(ξ) = 1 (19)

where αi and βi are the recurrence coefficients determined by the weighting function w(ξ)

and {Ψi(ξ)}Np

i=1 is a set of (monic) orthogonal polynomials with Ψi(ξ) = ξi +O(ξi−1), i =
1, 2, . . . , Np. The recurrence coefficients are given by the Darboux’s formulae [9]:

αi =
(ξΨi,Ψi)

(Ψi,Ψi)
i = 1, 2, . . . , Np

βi =
(Ψi,Ψi)

(Ψi−1,Ψi−1)
i = 2, 3, . . . , Np (20)

where (·, ·) denotes an inner product. The first coefficient β1 is given by (Ψ1,Ψ1). Gander
and Karp [10] showed that discretizing the weighting function leads to a stable algorithm.
Stieltjes’ procedure starts with i = 1. With Eq. 20 the first coefficient α1 is computed,
β1 =

∑N
j=1wj. Now Ψ2(ξ) is computed by Eq. 19 using α1 and β1. This is repeated

for i = 2, 3, . . . , Np. When continuous weighting functions are considered Np � N , for
discrete measures Np ≤ N . The inner product is defined as

(p(ξ), q(ξ)) =

∫
S

p(ξ)q(ξ)wN(ξ)dξ =
N∑
j=1

wjp(ξj)q(ξj) (21)

for two functions p(ξ) and q(ξ).
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From the recurrence coefficients αi and βi, i = 1, 2, . . . , Np, the collocation points ξi
and corresponding weights wi are computed using the Golub - Welsch algorithm [8]. With
the recurrence coefficients the following matrix is constructed:

J =



α1

√
β2√

β2 α2

√
β3 ∅√

β3 α3

√
β4

. . . . . . . . .

∅
√
βNp−1 αNp−1

√
βNp√

βNp αNp


(22)

The eigenvalues of J are the collocation points ξi, i = 1, . . . , Np, which are the roots
of the polynomial of order Np from the set of the constructed orthogonal polynomials.
The distribution of ξ is used to map the collocation points to the input parameters. The
weights are found by wi = β1v

2
1,i, i = 1, . . . , Np, where v1,i is the first component of the

normalized eigenvector corresponding to eigenvalue ξi.
From the distribution one can extract the probability density function or confidence

intervals. The mean and variance of the solution are found by

µu =

Np∑
i=1

ui(x, t)wi, (23)

σ2
u =

Np∑
i=1

(ui(x, t))
2wi −

(
Np∑
i=1

ui(x, t)wi

)2

(24)

where wi are the weights corresponding to the collocation points ωi. These relations are
derived from the definition of the mean and variance.
A stochastic computation is now performed as follows:

1. Specify input distributions for every uncertain parameter by determining the prob-
ability density function.

2. Compute collocation points and weights based on the probability density functions
of the uncertain parameter, using Eq. 20 and Eq. 22.

3. Perform deterministic computations for every collocation point. These computa-
tions can be performed in parallel.

4. Construct the stochastic solution using all obtained deterministic solutions, e.g.
mean / variance fields, uncertainty bars or probability density functions, using
Eqs. 18, 23 and 24.
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3 IPCM AND NIPCM COMPARISON: RAE2822

The proposed application involves the computation of the flow around a transonic
RAE2822 airfoil. The free stream flow conditions are Re = 6.5 × 106, M = 0.729 and
angle of attack α = 2.79◦.

Two cases are considered: one taking into account the uncertainty on the inlet Mach
number with a standard deviation of 0.005 and another one considering the uncertainty
on the AOA with a standard deviation of 0.1◦. For both cases the results of IPCM and
NIPCM will be compared. The uncertainties have a normal distribution implying the use
of Hermite polynomials according to the Askey scheme [6].

The flow solver used was FINETM/ Turbo of Numeca Int.; in addition FINETM/ Hexa has
also been used for NIPCM . The structured mesh used in the FINETM/ Turbo simulations
contains 17028 cells, whereas in the FINETM/ Hexa simulations an unstructured grid of
76063 cells was used, Fig. 1. In all calculations the Spalart - Allmaras turbulence model
was used.

In Fig. 2 the FINETM/ Turbo solution of the averaged pressure coefficient along the sur-
face is compared for IPCM and NIPCM for uncertain AOA and uncertain Mach number.
3rd order PC is used and results are compared with experimental data [11] as well as with
the deterministic solution. For the AOA uncertainty a good matching with experimental
results is obtained for both IPCM and NIPCM. Note that, near the shock position, the
NIPCM results differ somewhat from the deterministic and the IPCM solution. For the
Mach number uncertainty, the IPCM solution looks similar to the deterministic solution,
whereas the difference with NIPCM is more pronounced than for uncertainty on AOA,
with also a deviation at the leading edge on the suction side.

Fig. 3 shows the standard deviation of CP along the airfoil surface. These plots also
contain NIPCM results obtained with FINETM/ Hexa on a much finer mesh. It can be
observed that for AOA uncertainty, Fig. 3(a), in contrast to the IPCM results, no vari-
ance peak near the shock position is found with NIPCM. The NIPCM results of FINETM/
Hexa (on the finer mesh) predict again such a peak, though much smaller than the one
of IPCM. Also note that the predicted shock position with FINETM/ Hexa is different
from that of FINETM/ Turbo which is probably due to the finer mesh. It can also be
observed that, apart from the peak, the NIPCM results with Hexa and Turbo are very
similar and are systematically higher than the IPCM results, especially on the suction side.

For Mach number uncertainty, Fig. 3(b), all the simulations predict a variance peak near
the shock. For the IPCM and NIPCM results obtained with Turbo, the magnitude of the
peak near the shock is more or less the same, whereas the NIPCM results of Hexa predict
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a higher peak, again shifted upward due to different shock position.

Fig. 4 shows the variance on the Mach number in the flow domain near the airfoil for
AOA uncertainty for IPCM and NIPCM with Turbo. In both cases there is an increase of
variance near the shock, but in case of NIPCM this increase does not extend to the airfoil.
The shape of the Mach number standard deviation looks similar for both computations,
but the magnitude is generally higher for IPCM. A layer of increased variance can also
be observed near the airfoil downstream of the impingement of the shock.

In case of Mach number uncertainty, Fig. 5, the IPCM and NIPCM results are quite
similar everywhere and also the magnitude is comparable. Note again the layer of in-
creased variance near the airfoil after shock impingement.

Table 1 shows the experimental and deterministic aerodynamic forces, CL and CD. Ta-
bles 2 and 3 indicate that there are no important differences between IPCM and NIPCM
in mean, except for NIPCM CD in the case of Mach number uncertainty. Note that the
IPCM results for averaged CL and CD are in general closer to the deterministic values
than the NIPCM results. The variances of CL obtained with NIPCM are systematically
higher than those of IPCM, whereas the reverse is true for the variances of CD.

(a) (b)

Figure 1: Grid mesh, (a): FINETM/ Turbo, (b): FINETM/ Hexa
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(a)

(b)

Figure 2: CP comparison IPCM vs NIPCM, (a): AOA uncertainty, (b): Mach number uncertainty
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(a)

(b)

Figure 3: σCP
comparison IPCM vs NIPCM, (a): AOA uncertainty, (b): Mach number uncertainty
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(a)

(b)

Figure 4: σM AOA uncertainty, (a): Non - intrusive, (b): Intrusive
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(a)

(b)

Figure 5: σM Mach number uncertainty, (a): Non - intrusive, (b): Intrusive
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CL CD
FINETM/Turbo Exp FINETM/Turbo Exp

0.84229 0.803 0.01745 0.0168

Table 1: Deterministic and experimental CL and CD

CL CD
IPCM NIPCM IPCM NIPCM
0.8427 0.8219 0.01784 0.01751

σL σD
IPCM NIPCM IPCM NIPCM
0.00185 0.00849 0.00308 0.00109

Table 2: AOA uncertainty: values computed by IPCM and NIPCM

CL CD
IPCM NIPCM IPCM NIPCM
0.8413 0.8275 0.01764 0.02003

σL σD
IPCM NIPCM IPCM NIPCM
0.00469 0.01414 0.00083 0.00032

Table 3: Mach number uncertainty: values computed by IPCM and NIPCM

4 CONCLUSIONS

Results with IPCM and NIPCM for the transonic RAE2822 airfoil have been obtained
on identical grids using the same solver. The averaged surface pressure coefficients are
quite similar for IPCM and NIPCM, although some deviations are observed especially in
the shock region and near leading edge on suction side. In case of uncertain AOA, the
variance of CP along the airfoil does not show a peak near the shock for NIPCM, this
in contrast to IPCM. However a NIPCM simulation on a finer grid (with another solver)
reveals again this peak, be it smaller than that of IPCM. The same behavior is observed
for the variance of Mach number: although no peak can be observed close to the airfoil,
there is a substantial increase in the shock region further away from the airfoil. In case
of uncertain Mach number, the distributions of variance of CP along the airfoil are much
more similar. The same is true for the variance of Mach number. As for the averaged
aerodynamic coefficients (CL, CD), these are in general closer to the deterministic values
in case of IPCM. The predicted variances of CL are higher for NIPCM, for both cases
(uncertainty on AOA and on Mach), whereas the reverse is true for the variance of CD.
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