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Abstract. The goal of this research effort is to improve the efficiencies of CFD tools by 
focusing on the development of a robust, efficient, and accurate numerical framework that is 
capable of solving a variety of complex fluid dynamics problems; overcoming several 
limitations of well-established schemes.  The new scheme, termed the ‘Method of Consistent 
Averages’ (MCA)[1], has the following features: 

1. The scheme is developed on the basis of a unique combination of the differential and 
integral forms of the Navier-Stokes equations. As such, the scheme has the potential to 
accurately capture the flow physics. 

2. This scheme guarantees continuity of the numerical flux quantities rather than 
manipulating the primitive flowfield variables to ensure continuity. 

3. An accurate accounting of the mass, momentums, and energy fluxes is considered at two 
major locations; the center of the numerical control volume, and at each of the surface making 
up the volume of interest. 

The MCA numerical process is developed herein is based on two fundamental types of 
control volumes; namely, spatial cells and temporal cells. A typical spatial cell is developed 
from eight neighbouring node, where as, a typical temporal cell is developed from the center 
node of eight neighbouring cells. In this analysis, a control volume is composed of a collection 
of eight spatial cells and one temporal cell, and numerically described by the ijk-point. The final 
solution at node i,j,k is developed from a system of carefully crafted control volumes. The 
contributions of these nodes to the final solution at node i,j,k are dictated by the fluid dynamic 
conservation laws. 

 
 
 
 
 



Frederick Ferguson, Gafar Elamin and Mookesh Dhanasar 
 

 2

1 INTRODUCTION 

A historic review of the computer industry indicated that it has completed four 
generations and is now entering its fifth generation.  Engineers have labeled computers 
that use the vacuum tubes as the first generation computers, and those that used the 
transistors and diodes as the second generation of computers.  The integrated circuits 
(ICs) ushered in the third generation computers.  Currently we are enjoying the benefits 
of the fourth generation computers that were made possible thanks to the development 
of micro-processors. 

Arguably, the fifth generation of computers is already with us.  The development of 
integrated ‘software and multiprocessors’, of the type facilitated by field programmable 
gate arrays (FPGA) and others, are ushering a new generation of ‘Peta-scale’ computers. 
In principle, computer engineers have developed a common consensus on the path 
toward the fifth generation of computer based systems.  This path involves the global 
unification of software components that interacts with a series of hardware 
coprocessors.  The fifth generation of computers is expected to deliver performances in 
the order of petabytes (storage capacity in the order of 10 million or more gigabytes) 
and pataflops (one quadrillion floating point operations per second).  In the US, the 
National Science Foundation and DARPA have initiated funding for the development of 
such computers. In fact, DARPA has contracted with IBM through the PERCS 
(Productive, Easy-to-Use, and Reliable Computer System) program.  Other countries, 
such as, China, Germany and Japan, have similar programs. The immediate 
computational focus of the ‘Peta-scale’ computers under development will be on 
weather and climate simulations, nuclear and quantum chemistry simulations, and 
cosmology and fusion science simulations. 

The motivation of the research program described herein is geared towards the 
development of a Computational Fluid Dynamic tool that seeks to maximize the 
benefits of future ‘Peta-scale’ computers. 

2 A HISTORIC VEIW OF CFD AS AN INDUSTRIAL DESIGN TOOL 

A historic view of the Fluid Dynamic industry, especially, as it relates to the 
aerospace industry, indicates that there are at least three major breakthroughs in CFD. 
The first breakthrough occurred in the 1950’s and 1960’s.  During this period, 
numerical methods and grid generation techniques were merged into the formation of 
Computational Fluid Dynamics (CFD) as a special branch of fluid mechanics.  
However, in the 1950s and 1960s CFD did not play a dominant role, mainly due to the 
lack of computational facilities.  Nevertheless, numerical methods were developed and 
applied to 2D flows.  In those days, the results were always supported by experimental 
data, thus validating the importance of CFD. 

A second breakthrough in CFD occurred in the 1970s, when the science of 
orthogonal surface-fitted structured grids was introduced.  During that time, the storage 
and speed of selected and limited digital computers were sufficient to conduct CFD 
studies on flow problems of practical interest.  Using structured surface-fitted grids, the 
computations of flow over airfoils and wings became accurate, affordable and efficient. 
This breakthrough led to remarkable improvements in the design and performance of 
fixed wing aircrafts. 

The third breakthrough in CFD occurred in the 1980s and 1990s.  During this time, 
the computer had fully penetrated the industrial market and was well on its way to 
making it in every home.  In addition, there were remarkable improvements in both 
computational speed and storage.  At this time, numerical algorithms and grid 
generation techniques were expanded to included unstructured grids on realistic aircraft 
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configurations. The successful aerodynamic analysis of the full size aircraft 
configurations using CFD was demonstrated, [2].  It was also in the 1990s that CFD 
penetrated into other industries, such as, the automobile, civil and environmental 
industries. 

CFD as a design tool is playing a leading role wherever a flow field is being 
analyzed. CFD has significantly influenced the way engineers analyze problems and 
conduct design.  However, not withstanding these successes, there are still great CFD 
challenges remaining today [4,5]. 

3 THE CHALENGES OF THE CFD INDUSTRY 

Typically, any problem facing the CFD engineer can be solved through the 
integrated use of the following three elements [6,7,8,9,10]: 

(i) the available or intended computational hardware, 
(ii) an appropriate form of the conservation laws and their constitutive 

relations, and 
(iii) a specified set of computational grid points. 

As such, to understand the challenges facing the CFD industry, one must put these three 
elements in proper perspective. 

3.1 Conservation Laws and Their Constitutive Relations 

The computational hardware of interest to this research was described in the 
introduction section of this paper.  The motivation of the research program described 
herein is geared towards the development of a Computational Fluid Dynamic tool that 
seeks to maximize the benefits of future ‘Peta-scale’ computers. 

3.2 Conservation Laws and Their Constitutive Relations 

The conservation laws and their constitutive relations are usually specified by the 
CFD designer.  In most instances, these equations are chosen based on the capability of 
the available computational hardware and in the case of an industrial software, the 
available trubulence model.  The appropriate form of the conservation laws and their 
constitutive relations of interest to this research is the Navier-Stokes equation with the 
Reynolds Stress Model.  The relevance of turbulence models is becoming a very 
significant issue in CFD simulations.  Designers are currently focusing on problems 
where turbulence has the dominant effect and problems where the traditional two-
equation models are no longer adequate.  Clearly no proper evaluation of the merits of 
different turbulence models can be made unless the discretisation error of the numerical 
algorithm is known.  As such, grid sensitivity studies are crucial for all turbulence 
model computations, including the RSM. 

 
3.2.1: Reynolds stress transport models 
The Reynolds stress transport models (RSM) dispense with the notion of turbulent 

viscosity, and determine the turbulent stresses directly by solving a transport equation 
for each stress component.  This process requires the solution of six additional 
equations that are coupled to the Navier-Stokes equations, along with an equation for ε 
to provide a length scale [11,12,13].  In a similar manner, the turbulent heat fluxes are 
determined by solving three coupled equations; one for each flux component. 

In principle, the RSM can simulate complex strains and non-equilibrium flows. 
Based on today’s standards, RSM is expensive to compute.  In addition, RSM is 
complex, requiring boundary conditions for each of the new parameters, which can lead 
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to problems of convergence.  For these reasons it has not yet been widely adopted as an 
industrial tool. 

3.3 Computational Grid Points 

The successful analysis of any CFD design problem can be traced back to the 
successful development of its grid structure.  As such, in order to appreciate the 
challenges facing the CFD Industry one must take a critical look at the grid generation 
techniques available.  Typically, the grid generation procedure is left up to the CFD 
designer, who has one of two choices, structured or unstructured grids methods. 

3.3.1: Structured Grid Methods 

Structured grid methods take their name from the fact that the grid is laid out in 
blocks of regular repeating pattern.  These grids utilize quadrilateral elements in 2D and 
hexahedral elements in 3D.  Although the element topology is fixed, the grid can be 
shaped to be body fitted through stretching and twisting of the block.  In reality, 
structured grid tools utilize sophisticated elliptic equations to automatically optimize the 
shape of the mesh for orthogonality and uniformity.  Structured grids can be arranged in 
multiple blocks, with and without overlapping. Refer to Figure 1. 

Structured grids enjoy a considerable advantage over its unstructured conterpart, in 
that they allow a high degree of control.  In addition, hexahedral and quadrilateral 
elements, tolerates a high degree of skewness and stretching without significantly 
affecting the solution accuracy in the case of well behaved flowfields.  In addition, 
structured block flow solvers typically require the lowest amount of memory for a given 
mesh size and execute faster because they are optimized for the structured layout of the 
grid.  The major drawback of structured block grids is the time and expertise required to 
lay out an optimal block structure for industrial size model.  Grid generation times are 
usually measured in days if not weeks. 
 

Figure 1: Structured Overlapping Grids [3]. Figure 2: Unstructured Grids [3]. 

 
3.3.2: Unstructured Grid Methods 
Unstructured grid methods utilize an arbitrary collection of elements to fill the 

domain.  Because the arrangement of elements have no discernible pattern, the mesh is 
called unstructured. Refer to Figure 2.  These types of grids typically utilize triangles in 
2D and tetrahedra in 3D.  As with structured grids, the elements can be stretched and 
twisted to fit the domain.  These methods have the ability to be automated to a large 
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degree.  Given a good CAD model, a good mesher can automatically place triangles on 
the surfaces and tetrahedra in the volume with very little input from the user.  The 
automatic meshing algorithm typically involves meshing the boundary and then adding 
points in the interior.  The advantage of unstructured grid methods is that they are easily 
automated and, therefore, require little user time or effort.  The user need not worry 
about laying out block structure or connections.  Unstructured methods also enable the 
solution of very large and detailed problems in a relatively short period of time. Grid 
generation times are usually measured in minutes or hours. 

The major drawback of unstructured grids is the lack of user control when laying out 
the mesh. Typically user involvement is limited to the boundaries.  In addition, triangle 
and tetrahedral elements are resistant to stretching and twisting, therefore, the resulting 
grids are isotropic, with all elements having roughly the same size and shape.  This is a 
major problem when trying to refine the grid in a local area, often the entire grid must 
be made much finer in order to get the point densities required locally. Another 
drawback of this method is its reliance on geometric input or CAD data.  Typically, 
most meshing failures are due to some minuscule error in the geometric input. 
Unstructured flow solvers typically require more memory and have longer execution 
times than structured grid solvers on a similar mesh. 

3.4 Hybrid Cartesian Grid Flow Solver Approach 

The pros and cons of the state-of-the-art in grid generation science outlined in 
section 3.3, and the potential computational capabilities of the next generation 
computers outlined in section 1 provide a significant opportunity for the CFD industry 
[14,15]. Opportunities exist to overcome the existing challenges of grid generation and 
to boldly tackle the direct simulation of turbulent dominated flows over complex 
configurations. 

Reductions in aircraft design cycle times through the automated generation of 
structured grids with optimum surface resolution can be achieved.  These reductions 
will most likely come not from increased reliance upon user interactive methods, but 
instead from methods that can be fully automated and incorporated into ‘black box’ 
packages.  In comparison with unstructured grid methods, three-dimensional Cartesian 
grid approaches are still in its infancy.  However, limited experiences with automated 
Cartesian grid generation techniques are quite promising.  Our research is targeted at 
furthering the development of Cartesian methods so that they can become key elements 
of a completely automatic and coupled grid generation and flow solution procedure.  
The package must also be applicable to the aerodynamic analysis of complex aircraft 
geometries. 

Cartesian approaches are of course beset with their own unique difficulties.  The 
most challenging is the removal of the body-fitted grid constraint.  This allows the 
Cartesian hexahedra used to discretize the flow field and to intersect the surface in an 
arbitrary manner.  Successful research into the development of robust procedures for the 
efficient creation and distribution of the hexahedra will produced an automatic 
procedure for Cartesian grid generation.  Another potential benefit of this research is the 
ability to solve complex turbulent flow fields with RSM over industrial size 
configurations afforded by the simplicity of Cartesian grids. 

4 CURRENT RESEARCH FOCUS 
The immediate phase of this research is focused on the development of a robust, 

efficient, and accurate numerical framework that is capable of solving a variety of 
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complex fluid dynamics problems [16,17].  The new scheme is built with extensive 
physics considerations and has the following features: 

i. The numerical scheme is based on the solution of the integral form of the 
Navier-Stokes equation.  This approach focuses on the benefits of the 
traditional finite volume and finite difference schemes, and therefore 
guarantees the conservation properties throughout the domain by the first 
and the formulation simplicity by the latter. 

ii. The Cartesian grid generation procedure is used to develop spacial and 
temporal control volumes upon which the integral form of the physical 
conservation laws are applied.  As such, the scheme has the potential to 
satisfy the physical realities of fluid fluxes for both time and space. 

iii. Accounting of the mass, momentums, and energy fluxes (both within the 
control volume and through its surfaces) is conducted with the aid of the 
mean value theorem, rather than the traditional extrapolation or interpolation 
of the node’s information from neighboring cells. 

iv. The accuracy and efficiency of the scheme is demonstrated on flows with 
rectangular boundries. 

4.1 The Governing Equations 

The equations that govern fluid flows and the associated heat transfer are the 
continuity, momentum and energy equations.  These equations were independently 
constructed by Navier (1827) and Stokes (1845), and are referred to as the Navier-
Stokes equations.  In this research, the integral forms of the Navier-Stokes equations, 
(1–3) are of paramount importance.  The continuity, momentum and energy equations 
are listed as follows: 

∫∫∫ ∫∫ =+
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0sdVdv
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In Equations (1) the symbols, tv,,ρ , represent the density, the volume of a control 
fluid element, and time, respectively.  In addition, the symbols, V , sd  and q& , in 
equations (1) (2) and (3) represent the fluid velocity, the surface of the control volume 
and the local heat transfer rate.  In this research, fluid velocity and the surface element 
are described through the use of vector quantities as follows: 

kwjviuV ++=     (4) 

kdxdyjdxdzidydzsd ++=     (5) 

kqjqiqq zyx &&&& ++=      (6) 

In equations (2) and (3), the symbol, P, represents the pressure and the symbol, ,τ̂  
represents a symmetric tensor that defines the various components of the local viscous 
stresses.  This symmetric tensor is described by the equation: 
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where the symbols of the six independent components, zyzxyxyyxyxx ττττττ ,,,,,  and zzτ , 
are the local shear stress that were defined in [4,5] as follows: 
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The symbols, yx qq && , and zq& , in equation (6) represent the components of the heat flux 
vector in the x- , y-, and z-directions, respectively.  These components are defined by 
Fourier’s law, and expressed mathematically as,  
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The symbols, P and E, in equations (2) and (3) are defined as follows: 

2
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where R is the gas constant.  The symbols, μ  and k, represents the viscous and thermal 
properties of the fluid of interest.  In this analysis, the viscosity of the fluid is evaluated 
through the use of Sutherland’s law, [4,5], 
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∞μ and ∞T  are freestream values. 
In the case of 3D aerodynamic analysis, the Navier-Stokes equations (1)–(3) 

defined above can be treated as a closed system of five equations relative to five 
unknowns.  The unknows are the folowing five primitive flow field variables: 
[ ]Twvu ,,,,ρ .  The immediate goal of this research is to developed an explicit 
method that solves the Navier-Stokes system of equation as defined herein. 
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5 THE METHOD OF CONSISTENT AVERAGES  

In the developmental stages of this research, a typical fluid flow is represented by a 
rectangular domain [1].  This spatial computational domain is further divided into a 
collection of elementry cells or ‘spatial’ cells.  These cells are chosen as infinitesimal 
rectangular prisms, with unit normal, ñ, in the x, y, and z directions.  The dimensions of 
each side of a cell are defined by dx, dy, and dz, respectively. Refer to Figure 3. Further, 
a given cell is defined locally by six independent surfaces, and each surface defined by 
four points or nodes in a given plane.  Additionally, plus and minus notations are use to 
define the unit normal, ñ, with respects to each surface.  Next, each surface of each cell 
is defined by four nodes; namely, nodes-1, nodes-2, nodes-3 and nodes-4. Figure 3 
illustrates the plus and minus notations for the surfaces with normal to the z-direction. It 
is of interest to note that the use of the object oriented programming concept makes it 
very convenient to use identical surface objects in the x and y directions. 

In anlogous to ‘spatial’ cells, the concept of ‘temporal’ cells are also introduced. 
The ‘temporal’ cells are defined as rectangular prisims formed from the center points of 
eight neighbouring ‘spatial’ cells.  Finaly, a fluid control volume is defined, as a 
collection of eight ‘spatial’ cells and one temporal cell. A typical control volume is 
illustrated in Figure 4. 

 

Figure 3: Spatial Cell with Notation at Surface Nodes. Figure 4: Illustration of Control Volume. 

Each term in the Navier-Stokes equations (1)–(3) are applied systematically to 
each spatial cell.  The mean value theorem is invoked and a set of algebraic equations 
representing the rate of change of mass, momentum, and energy associated with each 
spatial cell is derived.  However, the rates of change of the time-fluxes are not 
associated with any grid point, but with the ‘spatial’ cell.  When the spatial cells are 
pieced together to form a temporal cell within the control volume, the arithmetic 
average of the rates of change within the temporal cell then defines rates of change at 
the ijk-point of interest. 

It is of interest to note that the plus and minus surfaces in each direction are 
adequate to evaluate the invicid fluxes.  However, two additional and adjacent surfaces 
in each directions are needed for evaluating the viscous terms.  Nevertheless, in the 
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analysis, these surfaces are denoted as the plus-plus and minus-minus surfaces, and are 
treaded in the manner described earlier. 

5.1 Application of the Conservation of Mass to a Spatial Cell  

To demonstrate the utility of this numerical approach to fluid dynamic problems, 
consider a typical flow through the surfaces of an infinitesimal spatial cell, as illustrated 
in Figure 5.  In general, the fluid flows arbitrary in all directions.  Even though the 
Method of Consistent Averages (also refered to as the Integral-Differential Scheme 
‘IDS [1]’) has the potential to solve 2D or 3D fluid-flow problems, for the purpose of 
illustration, the discussions conducted in this paper are limited to a 2D fluid flow 
application. 
 

 
Figure 5. A Typical Flow through the Surfaces of Control Volume 

 
When describing the 2D approach of the Method of Consistent Averages, a major 

challenge involves the conversion of the naturally 3D conservation laws into their 2D 
counterparts that maintain the integrity of the 3D flowfield and its associated effects. To 
achieve this goal, two scientific assumptions were made.  They are as follows: 

i. Using the Cartesian system of coordinates, the spatial cells are chosen as 
infinitesimal rectangular prisms, with unit normal, ñ, in the x, y, and z directions. 

ii. It is assumed that no flow occurred in the z-direction. In addition, the dimension, 
dz, of a typical control volume is always a single unit, ie., dz = 1. 

These assumptions led to the fact that the fluid properties in the z-direction across any 
cell are constants and the net flow of mass, momentum, and energy in the z-direction is 
always zero.  Consequently, in all surface integration processes, all pertinent terms that 
are associated with the z-directions as required by the conservation laws are neglected. 
 Armed with these two assumptions, the governing equations were converted into 
their non-dimensional form and applied on each small control volume.  The algebraic 
forms of the rate of change of mass, momentum, and energy at the center of each 
control volume are formulated as follow: 
 

Flow enters from the lower side

1 2

4 3

Flow leaves from the upper side

Flow enters from 
the left side

Flow leaves from 
the right side

dy

dx

dz

2’1’

3’4’
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5.2 Explicit Time Marching Process 

The explicit time matching process associated with the Method of Consistent 
Averages is conducted based on the taylor series expansion formulation as follows [1]: 

t
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where the time flux vector, U, is defined at each ijk-point, such that, 
[ ]TEvvuU ρρρρρ= .  The terms on the right of equation (18) are not defined 

at an ijk-point but rather from the control volume and the temporal cell associated with 
each ijk-point.  The term, tavg

kjiU ,
,, , is the average value of the flux quantities associated 

with the control volume surrounting the ijk-point. Refer to Figure 5.  Where as, the time 

derivative term, 
tavg

kjidt
dU ,
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⎜
⎝
⎛ , is associated with the average rate of change of temporal 

fluxes associated with the temporal cell at the ijk-point. 
Since the Method of Consistent Averages is an explicit numerical technique for the 

Navier-Stokes equations, the time step, tΔ , is subjected to a stability criterion.  This 
criterion is determine by the following form of the Courant-Friedrichs-Lewy (CFL) 
relationship, 
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The constant, C, in equation (19) is defined in the range of 80C50 .. ≤≤ , and the 
symbols, kjia ,,  and kji ,,

'ν , represent the local speed of sound and dynamic viscosity. In 

this analysis, kji ,,
'ν , is evaluated as follows [4,5]: 
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6 PRELIMINARY RESULTS 

As described earlier in this paper, the immediate goal of this research effort is to 
develop a computational tool that accurately solves the Navier-Stokes equations in the 
Cartesian system of coordinates.  In this section, the following three standard CFD 
problems in 3D are solved to demonstrate the validity of the new computational tool: 

i. Hypersonic Boundary Layer Interaction Problem 
ii. Incompressible Lid Driven Cavity flow Problem 
iii. Shock Train Problem 
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The solution procedure adopted during the numerical simulation of these problems is as 
follows: 

i. The physical domain of the problem is defined in Cartesian Coordinates. 
ii. The freestream parameters of interest (M, Re, Pr, etc.) are mapped to fit 

the Navier-Stokes equations requirements and the physical domain 
described in 1. 

iii. The boundary conditions are assigned in accordance with Method of 
Consistent Averages methodology. 

iv. The solution grid and initial solution are auto-generated. 
v. The solution data is extracted from the 3D domain through planes and 

lines at the locations of interest. 

7 HYPERSONIC FLOW OVER A FLAT PLATE  

This section focuses on a developing boundary layer on a flat-plate under supersonic 
conditions. An oblique shock wave develops at the leading edge of the flat plate due to 
the viscous boundary layer effects. Refer to Figure 6. The occurrence of the boundary 
layer often provokes dramatic changes in the flow field features, both qualitatively and 
quantitatively. Important consequences of this occurrence are the increase in the skin 
friction coefficient and the shear stresses inside the boundary layer region. Moreover, 
dissipation of kinetic energy within the boundary layer can cause high flow-field 
temperatures and thus high heat-transfer rates. The supersonic flow over a flat plate is a 
classical fluid dynamic problem, and it has received considerable attention from many 
researchers; including Anderson [4,5], Akwaboa [17], MacCormack [18] and 
Rasmussen [19]. 
 

Figure 6: Hypersonic Boundary Layer [4] Figure 7: 3D Hypersonic Flowfield [1] 

7.1: Freestream and Convergence Conditions 

A 3D flow at Mach number 4.0 is considered. The specific heat ratio, γ , is set to 
1.4, and the Prandtl number, Pr to 0.71. The freestream density, temperature, viscosity, 
and speed of sound are set to 1.25518 kg/m3, 288.18 k, 1.7894*10.0E-5 kg/m.s, and 
340.28 m/s, respectively. The Reynolds number is 9.3191*10.0E+7, based on a 1.0 m 
high flow field The flow field domain is 1.2m by 1.0 m. 

Shock wave
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The non-dimensional algebraic form of the mass, momentum, and energy equations 
derived in section 4 and outlined in section 5, are used to develop the numerical 
solution. It should be noted that when evaluating the viscous terms 

zyxyzxzxyzzyyxx qandqq &&& ,,,,,,,, ττττττ  at the inflow, and symmetry boundaries, the 
forward differencing approximation was used. The backward differencing 
approximation was used to evaluate these quantities at the far-field and outflow 
boundaries. For all internal points, these terms are evaluated according to the procedure 
described earlier. The solution marches in time from the initial conditions until it 
converged to the steady state condition. The convergence was considered to occur when 
the maximum residual of the mass, momentum, and the energy fluxes at each internal 
grid point changed no more than 10E-15 between time steps. Mathematically, the 
maximum residual of the fluxes is calculated as the difference between the new and the 
old value of the flux for each two consecutive time steps, such that, 
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7.2 Flat Plate Laminar Flow Results 

Figure 8 illustrates the 3D distribution of the x component of the velocity on three 
perpendicular XY, XZ, and YZ planes. The planes intersect at the mid point of the 
domain. Another XZ plane at y = 0 is plotted to show the solid boundary on the plate 
surface. As expected the velocity distribution starts from the zero on the plate surface 
due to the no slip boundary condition and increase gradually until it reaches the 
freestream value out side the boundary layer zone. The boundary layer is along the XY 
plane parallel to the flow direction. The velocity reaches its freestream value before the 
mid point along the domain height. 
 

Figure 8: Residual Error vs. Time Figure 9: The exit u-Velocity component 
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7.3 Code Validation Studies 
It is of interest to note that even though the flat plate problem was solved in a 3D 

domain, the boundary conditions on the side surfaces were set so as to produce a 2D 
solution. This was done mainly for code validation purposes. First and foremost, grid 
validation studies were conducted. This study was conducted over a series of grids, 
rangening from 101 by 101 nodes to 501 by 501 nodes. During these studies, the 
behavior of the independent flow field variables, r, u, v and T, were observed. The 
results of this study are illustrated in Figures 8 through 11, where the behavior of the 
flow field variables, r, u, v and T, were documented. 
 

 

Figure 10: The exit Temperature in Boundary 
Layer Figure 11: Pressure distribution in Boundary Layer 

 
The residual as a function of the number iterations are plotted in Figure 8, for each 

grid size described earlier. In each case, ther results were consistent, the residual error, 
refer to equation (20), exponentially decreased with respects to time. Also common in 
these illustrates, the flow field variables all approached a steady solution as the grids get 
finer. 

Figure 12: Density distribution in Boundary Layer Figure 13: Pressure distribution in Boundary Layer 

Of importance also to note, is the fact that the pressure distributions shows that the 
magnitude of the shock wave was capture in the coarse grid. However, the coarse grids 
over predictes the flow field variables, r, u, v and T, in all cases, including the 
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boundary layer height. Finally, contour plots of the flow field variables were developed 
using data from the fine grids, 401 by 401, and illustrated in Figures 12 – 15. The 
results illistrated in Figures 12 – 15, illustrates that the boundary layer and the shock 
wave emminates from the the leading edge of the plate. Moreover, there is no clear 
boundary layer, but a ‘shock layer’, where the shock wave and the boundary layer are 
totally merged. 

 
Figure 14: u-Velocity distribution in Boundary 

Layer 
Figure 15: v-Velocity distribution in Boundary 

Layer 

8 THE LID DRIVEN CAVITY PROBLEM 

Consider a 3D incompressible flow field that is confined to a cavity, where the 
motion in the cavity is generated by the sliding motion of the fluid at a plane of one of 
its surfaces.  This moving fluid surface generates vorticity which diffuses inside the 
cavity.  The diffusion effect now becomes the dominant mechanism driving the flow. 
As part of the validation studies of the Navier-Stokes code developed herein, the lid 
driven cavity problem was solved.  Figures 16 and Figure 17 presents results obtained 
from the IDS method and compares this results to that found in Choi & Merkle [20] and 
Vigneron et.al [21]. 

Figure 16. The x Component Velocity Profile 
along the Vertical Centerline of the 
Cavity 

Figure 17. The y Component Velocity Profile along 
the Horizontal Centerline of the Cavity 

The data presented are the steady state solution for the x-component of the velocity 
on the vertical centerline and the y-component of the velocity on the horizontal 
centerline of the cavity.  It is of interest to note that incompressible solutions are 
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obtained without introducing any modifications to the algorithm.  Figures 18 and 19 
present streamlines comparison between the IDS solution and Vigneron et.al [21]. 
solution for the cavity problem under the same operating conditions.  The IDS solution 
shows very good agreement with the results of Choi & Merkle [20], and Vigneron et al 
[21]. 

 

Figure 18. Cavity Streamlines plot of the IDS 
Solution 

Figure 19. Cavity Streamlines plot Vigneron 
Solution 

To study the effect of the boundary conditions on the solution, the x component velocity 
distribution on the mid XY and YZ planes in the domain is plotted in Figure 20.  As in 
the figure for the wide container case, the flow seems to be symmetric around the mid 
XY plane and there no any effect of the boundary parallel to the direction of the flow.  
When a finite width of the container is considered and the solid boundary is enforced on 
the planes parallel to the direction of the flow, the influence of the boundary force the 
particles to twist while it is moving and the three dimensional flow is simulate more 
accurately in this case. 
 

 
Figure 20. The x Component Velocity Distribution on the Mid XY and YZ planes [1]. 
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9 DEFINITIONS OF SHOCK TRAIN AND PSEUDO SHOCK 

A characteristic of supersonic internal flows is the development of a strong shock 
wave that forms as a result of the flow interaction with the boundary layer along the 
wall surface of the device.  The shock is bifurcated and a series of repeated shocks is 
formed along the flow passage.  The number of these shock series and their position in 
the flow passage is dependent on the freestream Mach number, the pressure conditions 
imposed at both the upstream and downstream locations of the flow passage, the 
passage geometry, and the wall friction due to viscosity.  This phenomena was 
described in Om et al [22] as ‘multiple shocks’, by McCormick [18], as a ‘shock 
system’, and most recently by Carroll and Dutton [23], and Matsuo [24] as a ‘shock 
train’.  Through the interaction region, the flow can be decelerated from a supersonic 
flow to a subsonic flow.  Figure 21 presents an illustration of the shock train 
phenomenon in an internal duct.  The shock train is clearly visible and is usually 
followed by an adverse pressure gradient region in a long enough duct.  The interaction 
region including both shock train and the subsequent pressure recovery region is 
referred to as a ‘pseudo shock’. 
 

 
Figure 21.  Schematic of Shock Train and Pseudo Shock [23] 

 
Also presented in Figure 21 is the behavior of the static pressure at the wall and at 

the center line of the constant area duct.  Examination of this figure revels that the static 
wall pressure rises at a faster rate in the shock train region, i.e. between points 1, j, than 
in the mixing region, i.e. between points j, 2.  A similar trend (pressure rise) is observed 
in the static pressure distribution along the duct centerline.  The oscillations observed in 
the static pressure distribution along the duct centerline are due to the presence of the 
successive shock series or shock train.  Beyond point j no shock exists and the pressures 
at the wall surface and at the centerline are essentially the same.  

The pressure rise between the points 1 and j is caused by the shock train.  If the 
flow is fully subsonic and uniform at the point j, then the static pressure downstream of 
this point should decrease due to the frictional effect.  However, it should be noted that 
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the shock train is followed by the “mixing region”, where no shocks exist. The pressure 
increase in this region is due in some extent to the mixing of a highly non-uniform 
profile created by the shock train.  The static pressure reaches its maximum at point 2.   
 
9.2.1 IDS Solution results to the Shock Train Problem 

The pressure behavior along the duct centerline and along the duct wall for shock 
train was described in the preceding section.  IDS solution results to the shock train 
problem is now presented in Figures 22 and 23.  Validation of the IDS solution to the 
shock train problem is accomplished with the use of the experimental and numerical 
results obtained by Carroll et al.  In their numerical computation they used the Baldwin-
Lomax algebraic turbulence model and the Wilcox-Rubesin two equations turbulence 
model [23].  Figure 22 closely reproduces the static pressure behavior results and 
physics of the shock train problem as presented in Figure 21.  Examination of Figure 23 
clearly demonstrates that the results obtained from the IDS solution to the shock train 
problem closely recovers results obtained experimentally and numerically by other 
researchers in the field. 
 

Figure 22:  Wall and Centerline Pressure along the 
Duct Length [1] 

Figure 23:  Wall Pressure along the Duct Length 

Having validated the IDS methodology, results are now presented in Figure 24 for 
the Mach number distribution along the mid XY plane.  Examination of Figure 24 
clearly indicates the presence of the shock train region.  The contour lines in this figure 
shows that the flow changes from a supersonic flow to a subsonic flow across the shock 
as is expected from the physics of the flow. 

Figure 24:  Mach Number Distribution on the Mid XY Plane [1] 
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10 CONCLUSION 

A numerical procedure for solving the 3D Navier-Stokes equations was developed 
and validated. This procedure is called the Method of Consistent Averages (MCA). In 
this procedure, the concept of a special control volume was considered as the integral 
form of the Navier-Stokes equations were implemented to solving fluid flow problems.  
The numerical procedure was designed to overcome several limitations of traditional 
finite volume schemes. In addition, the procedure is built on a strong mathematical 
foundation with extensive physics considerations. The main features of this numerical 
framework are as follows: 

i. The computational domain is descretized in a collection of spatial cells, with 
eight neighboring cells forming a temporal cell, and a control volume. 

ii. The rates of change of the fluxes at the center of each spatial and temporal 
cell are evaluated based on the conditions immediately outside of its 
surfaces. 

iii. The mean value theorem is used in these all numerical calculations. 
iv. As in traditional marching schemes, the evolution of the explicit solution 

process is based on Taylor’s series expansion. Once again, each term in the 
expansion equation is evaluated based on the mean value theorem. 

At this stage of its development, the MCA/IDS numerical procedure was validated 
through the use of three established flow field problems. These problems are listed as 
follows: the hypersonic boundary layer problem, the lid driven cavity problem and the 
pseudo-shock train problem.  The solutions generated for these problems using the 
MCA procedure showed very good agreement with the physical expectations and 
experimental data for each problem. A CFD literature survey indicated that a large 
percentage of the compressible flow field solvers encountered convergence difficulties 
when utilized to solve incompressible flow problems [1]. In an effort to demonstartes it 
unique capability, the MCA/IDS was used to solve the incompressible lid driven cavity 
problem. The MCA delivered excellent results for this problem without any 
convergence difficulties. In addition, the MCA procedure was employed to solve a 
pseudo-shock train problem. This problem is considered as one of the most challenging 
problems encountered in computational fluid dynamics [1]. Once again, the MCA 
procedure predicted excellent results. In conclusion, the solutions obtained for 
compressible external and internal flows, and the incompressible lid driven cavity 
problem justify the belief that the MCA procedure is robust, efficient, and capable of 
solving a variety of complex fluid dynamics problems. 
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