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Abstract. We present here a numerical scheme for the simulation of polymer flows. We
consider here two differential nonlinear models : the Giesekus and the Phan-Thien Tanner
models. Their numerical approximation is achieved by means of Crouzeix-Raviart non-
conforming finite elements for the velocity and the presure, respectively piecewise constant
elements for the stress tensor. We present numerical simulations on a 4:1 contraction
illustrating the good behavior of our method for large Weissenberg numbers.
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1 INTRODUCTION

We are interested in the numerical simulation of polymeric liquids which are, from a
rheological point of view, viscoelastic non-Newtonian fluids. This is a challenging problem,
due to the intrinsic properties of polymers and to the internal coupling between the
viscoelasticity of the liquid and the flow, quantified by the Weissenberg number We = λγ̇
with γ̇ the shear rate and λ the relaxation time. The existing commercial codes are
generally only able to deal with We up to 10, which is insufficient to describe polymer
flows in a processing machine. The source of the problem is the breakdown in convergence
of the algorithms at critical values of the Weissenberg number.

The rheological behavior of polymers is so complex that many different constitutive
equations have been proposed in the literature. We use the nonlinears differentials models
of Giesekus and of Phan-Thien Tanner (PTT).

Our goal is to develop a robust numerical scheme to obtain realistic simulation for
high Weissenberg numbers. We consider here the 2D case and triangular meshes. We
approach the velocity by means of nonconforming finite elements of Crouzeix-Raviart and
the stress tensor by means of totally discontinuous piecewise functions. The convective
term on the stress tensor is treated using an upwind scheme, similarly to the well-known
Lesaint-Raviart scheme.

The outline of this article is the following. In the second section we describe the physical
models, then in the third section we present the numerical scheme. Finally, we present
numerical tests obtained on 4:1 contraction benchmark illustrating the good behaviour of
our method for large Weissenberg numbers, and the positive definiteness of the so-called
discrete conformation tensor, which is a crucial point in computational rheology.

2 GOVERNING EQUATIONS

The flow of an incompressible isothermal liquid is described by the mass conservation
law :

∇ · u = 0, (1)

the momentum conservation law :

ρ∂tu + ρ(u · ∇)u− divτ +∇p = 0 (2)

and a constitutive equation. Here above, u is the velocity, p the pressure, τ the stress
tensor and ρ is the density.

We consider here two constitutive equations, the Giesekus equation introduced in [6]
and the simplified Phan-ThienTanner equation introduced in [10]. It is useful to introduce
the following upper-convected derivative of a given tensor A :

O
A = ∂tA+ u · ∇A− A(∇u)t −∇uA
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Then, the Giesekus law is given by:

O
τ +

1

2G
ττ + λ τ = 2η D.

Here above, η is the viscosity of the liquid and G is the elastic modulus given by η
λ
. D is

the rate of strain tensor defined by D = 1
2
(∇u + (∇u)t).

The simplified or affine Phan-Thien and Tanner model can be written as follows:

O
τ +

ε

G
tr(τ)τ + λ τ = 2η D

where ε is a non-dimensional adjustable parameter called the extensional parameter.
We consider a bounded polygonal domain Ω of R2. The corresponding complete models

are obtained by adding boundary conditions for u on ∂Ω and for τ on the inflow boundary
∂Ω− = {x ∈ ∂Ω; u(x) · n(x) < 0}, and initial conditions on u and τ .

In what follows we consider the stationary case and, in order to simplify the presenta-
tion, u = 0 on ∂Ω.

3 NUMERICAL METHOD

3.1 Preliminary notations

Let us first introduce some useful notations. We consider a regular family of triangu-
lation (Th)h>0 consisting of triangles : Ω =

⋃
T∈Th

T . We agree to denote by εinth the set

of internal edges of Th, by ε∂h the set of edges situated on the boundary ∂Ω and we put
εh = εinth ∪ ε∂h. As usually, let hT be the diameter of the triangle T and let h = max

T ∈Th

hT .

On every edge e belonging to εinth , such that {e} = ∂T i ∩ ∂T j, we define once and
for all the unit normal n. For a given function ϕ with ϕ|Ti

∈ C(Ti) (1 ≤ i ≤ 2), we
define on e : ϕext(x) = limε→0ϕ(x− εn), ϕin(x) = limε→0ϕ(x + εn) as well as the jump
[ϕ] = ϕext − ϕin. If e ∈ ε∂h, n is the outward unit normal and [ϕ] is the trace of ϕ on e.
We agree to denote the L2(e)-orthogonal projection of a given function ϕ ∈ L2(e) on Pk
(k ∈ N) by πkϕ where Pk is the polynomial space of maximum degree k. As usually, we
denote by ϕ+(−) the positive, respectively negative, part of ϕ.

3.2 Discrete formulation

We consider a velocity-pressure-stress tensor formulation of each of the previous models.
The velocity and the pressure are approximated by nonconforming finite elements of
Crouzeix-Raviart (cf [1]) while the stress tensor is approximated by P0 discontinuous
finite elements. Thus, we introduce the corresponding discrete spaces:

V h =
{

v ∈ L2(Ω) ; (v)/T ∈ P 1, ∀T ∈ Th and [π0v]/e = 0,∀e ∈ εh
}
,

Qh =
{
q ∈ L2

0(Ω); (q)/T ∈ P0, ∀T ∈ Th
}
,

Xh =
{
σ ∈ X; (σ)/T ∈ P 0, ∀T ∈ Th

}
,
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where X is the space of symmetric tensors defined as follows:

X =
{
τ = (τij)1≤i,j≤2 ; τij = τji, τij ∈ L2(Ω), i, j = 1, 2

}
and

L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

qdx = 0

}
.

We introduce the following discrete formulation of the Giesekus problem:
(uh, ph, τh) ∈ V h ×Qh ×Xh

a (uh,uh; vh) + b (ph,vh) + c0(vh, τh) = l (vh) ∀vh ∈ V h

b (qh,uh) = 0 ∀qh ∈ Qh

c (uh, τh; θh) + d (τh, τh; θh) = 0 ∀θh ∈ Xh

(3)

A similar formulation can be obtained for the PTT model by changing correspondingly
d(·, ·; ·). The form a(·, ·; ·) can be decomposed into two parts:

a(uh,uh; vh) = a0(uh,uh; vh) + γ a1(uh,vh) .

The term a0(·, ·; ·) represents the approximation of the following convective term:

a0 (uh,uh; vh) =
∑
T ∈Th

∫
T

ρuh∇uh · vh dx,

plus eventually an upwinding stabilization whereas the bilinear forrm a1(·, ·) is defined
by:

a1(uh,vh) = η
∑
e∈ εint

h

1

|e|

∫
e

[uh · n] [vh · n] ds

and γ is a stabilization parameter. This term stabilizes the formulation thanks to a
discrete Korn type inequality for discontinuous spaces [3].

The form b(·, ·) is the classical one involving the divergence of the velocity:

b(qh,vh) = −
∑
T ∈Th

∫
T

qh∇ · vh dx.

The nonlinear forms c(·, ·; ·) and d(·, ·; ·) are defined by:

c(·, ·; ·) = −2η c0(·, ·) + c1(·, ·; ·) + c2(·, ·; ·) , d(·, ·; ·) = d0(·, ·) + d1(·, ·; ·) .

Here above, c0(·, ·) is the linear form:

c0(τh,vh) =
∑
T ∈Th

∫
T

τh : D(vh) dx,
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c2(·, ·; ·) represents the objective derivative:

c2(uh, τh;σh) = −λ
∑
T ∈Th

∫
T

τh (∇uh)
t : σh dx− λ

∑
T ∈Th

∫
T

∇uh τh : σh dx.

For the approximation of the convective term u ·∇τ , we follow the approach of Lesaint-
Raviart (cf [9]) and we adapt it for a nonconforming velocity field. Thus we approach∫

Ω

u · ∇τ : σdx by :

c1(uh, τh; θh) =
∑
e∈ εh

∫
e

Fe(τh,uh,n)[σh] ds,

where Fe(τh,uh,n) = (πe0vh · n)+τ in
h + (πe0vh · n)−τ ext

h .
The form d0(·, ·) is defined as:

d0(σh, τh) =
∑
T ∈Th

∫
T

σh : τh dx

and d1(·, ·; ·) takes into account the quadratic term:

d1(τh, τh;σh) =
1

2G

∑
T ∈Th

∫
T

τhτh : σh dx.

Finally, the righthand-side term is defined as:

l(vh) =
∑
T ∈Th

∫
T

f · vh dx

where f ∈ L2 (Ω) is the data of the problem.
This nonlinear problem is solved by means of Newton’s method. This necessitates the

computation of the following jacobian matrix: A0,u + γA1 B C0

Bt 0 0
−2η Ct

0 + C1,u + C2,u 0 D0 + C1,τ + C2,τ +D1,τ

 .

The corresponding forms are defined as follows, where ui and τ i are the previous
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Newton iterates:

a0,u(uh,vh) =
∑
T ∈Th

∫
T

((ui · ∇)uhvh + (uh · ∇)uivh) dx,

c1,u(uh, σh) =
∑
T ∈Th

∫
∂T−

uh · n τ ext :
(
σint
h − σext

h

)
ds,

c1,τ (τh, σh) =
∑
T ∈Th

∫
∂T−

ui · n τ ext
h :

(
σint
h − σext

h

)
ds,

c2,u(uh, σh) = −λ
∑
T ∈Th

∫
T

τ i (∇uh)
t : σh dx− λ

∑
T ∈Th

∫
T

∇uh τ
i : σh dx,

c2,τ (τh, σh) = −λ
∑
T ∈Th

∫
T

τh
(
∇ui

)t
: σh dx− λ

∑
T ∈Th

∫
T

∇ui τh : σh dx,

d1,τ (τh, σh) =
∑
T ∈Th

1

2G

∫
T

(
τh τ

i + τ i τh
)

: σh dx.

A complete analysis of the underlying Newtonian case (for λ = 0) has been performed,
and the optimal convergence rate has been obtained (cf [2] ). As regards the Giesekus
constitutive law, the discrete positivity of the conformation tensor has been shown for (3)
for a given velocity and under certain hypotheses. The study of the existence of solutions
for the full model is ongoing work, based on the discrete positivity and on energy estimates.

Finally, an analogous method has been proposed on quadrilaterals, using Rannacher-
Turek finite elements and an additional regularisation term. All previous results can then
be extended on quadrilaterals (cf [7]).

4 NUMERICAL TESTS

For all considered tests, we chose η = 1000 Pa.s and ρ = 1000 kg/m3. For each value
of λ, we compute the largest Weissenberg number for a corresponding Newtonian fluid as
follows:

We = λ
3ū

a

where ū is the inflow velocity in the thin channel and a its thickness. The considered
geometry here is a 4:1 planar contraction presented in Fig. 1. The abrupt contraction in
the geometry allows to highlight the particular behaviour of polymer flows. On the inflow
Γ1, we impose a constant velocity (v, 0) with v = 0.1 m/s whereas on the outflow Γ3 we
impose a homogeneous Nemann condition. On Γ3, we impose v = 0 and we take Γ4 as a
symmetry axis.

Other benchmark test-cases have also been studied as for instance a 4:1:4 contraction
and flows past a cylinder.
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Figure 1: 4:1 planar contraction

4.1 Validation of the code

The CFD codes for polymer liquids are generally only able to deal with We up to 10.
The most popular code for the simulation of polymer flows is Polyflow developped by the
Cesame team (http://www.ansys.com/products/polyflow). We have implemented our method
in the C++ library Concha developped by the INRIA team Concha (http://uppa-inria.univ-
pau.fr/concha). This method has been yet numerically validated for the Newtonian case.
In Fig. 2, we compare the results obtained with these two codes for a Giesekus liquid and
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Figure 2: Comparisons with Polyflow

for a Weissenberg number equal to 7.68. This is the highest value for which Polyflow still
converges. We have used a mesh consisting of 25 794 triangles with Concha, respectively 14
866 with Polylow. We observe a good agreement between the two approaches. Moreover,
the modification of the velocity profiles and the shut down of the pressure are typical be-
haviours of non-Newtonian fluids.
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We are now interested in the behaviour of our numerical scheme for different Weis-
senberg numbers. We present in Fig.3, respectively in Fig.4, the streamlines for a Giesekus
liquid, repctively for a PTT liquid with ε = 0.05, for We varying between 0, which corre-
sponds to the Newtonian case, and 21. We note that for the two models, the recirculation
vortices clearly grow with We. This phenomena is also in agreement with the theory and
can be explained by the emergence of normal stresses in the secondary shear flow.

Figure 3: Streamlines for a Giesekus liquid

4.2 Positive definiteness of the conformation tensor for the Giesekus model

The loss of convergence of the numerical schemes at high Weissenberg numbers has
often been associated with the loss of the positive definiteness of the conformation tensor
at the discrete level. Note that the continuous conformation tensor is known to be positive
definite. Numerical schemes preserving this property allow for energy estimates to be
established, which generally ensure the stability. Recently, two different approaches in
order to preserve the discrete positivity have been proposed. Fattal and Kupferman
(cf [5]) employ the logarithm of the conformation tensor and re-write the constitutive
equation, while Lee and Xu (cf [8] ) use the similarity between the constitutive equation
and a differential Riccati equation.

In [4], this approach was adapted to the Giesekus equation and to the finite element
method presented above. Thanks to the well-known properties of algebraic Ricatti equa-
tion, they show that under certains hypotheses, Newton’s method for (3) yields positive
definite iterates, which moreover converge towards the maximal positive definite solution.

To illustrate this result, we present in Fig.5 and Fig.6 the positive eigenvalues of the

discrete conformation tensor, given by Ch =
λ

η
τh+I, for rather high Weissenberg numbers,
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Figure 4: Streamlines for a PTT liquid

up to 33.5. For higher values of We, the Newton method doesn’t converge, which can be
explained by the loss of positive definiteness of Ch.

We = 6 We = 18

We = 30 We = 33.5

Figure 5: First eigenvalue of the conformation tensor

We = 6 We = 18

We = 30 We = 33.5

Figure 6: Second eigenvalue of the conformation tensor
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