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Abstract. This paper describes the porting of a substantial portion of FEFLO to GPUs
FEFLO is an adaptive, edge-based finite element code for the solution of compressible
and incompressible flow, which is primarily written in Fortran 77 and has previously been
ported to vector, shared memory parallel and distributed memory parallel machines. Due to
the large scale of FEFLO and the likelihood of human error in porting, a specialized Python
script, based on FParser (Peterson, 2009), was written to perform automated translation
from the OpenMP-parallelized edge and point loops to GPU kernels implemented in CUDA,
along with GPU memory management. The results of verification benchmarks performed
and preliminary performance results will be presented.

1 Introduction

Graphics processing units (GPUs) are becoming a mainstream platform for high per-
formance computational fluid dynamics. The NVIDIA Tesla 10-series GPUs, released in
2008, achieve nearly one teraflop of peak performance, or roughly an order of magnitude
higher peak performance than high-end CPUs [12]. Furthermore, the upcoming NVIDIA
Tesla 20-series GPUs will feature 512 CUDA cores, more than doubling the number of
cores present in the Tesla 10-series, adding a data-parallel cache, and improving peak
double-precision performance by a factor of 8x [13].

Due to such a substantial performance advantage of GPUs over CPUs, there has been
a great deal of research investigating the implementation of CFD codes on GPUs. Much
of this effort has been directed towards the case of structured grid based solvers. These
solvers are particularly amenable to GPU implementation due to their regular memory
access pattern. Work in this area includes that of Brandvik and Pullan [1–3], who have
developed two and three dimensional Euler and Navier-Stokes solvers for GPUs, with sup-
port for multiple GPUs via MPI, and achieved an order of magnitude gain in performance.
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Göddeke et al. [8] have implemented a multi-level, globally unstructured, locally struc-
tured, Navier Stokes solver. LeGresley et al. [11] have implemented a multi-block Euler
solver for simulating a hypersonic vehicle configuration, while Cohen and Molemaker [4]
have implemented a 3D finite volume Boussinesq code in double precision. Further work
on regular grid solvers includes that of Phillips et al. [16], who have developed a 2D com-
pressible Euler solver on a cluster of GPUs, and Jacobsen, Thibault, and Senocak [9,21],
who have implemented a 3D incompressible Navier Stokes solver for GPU clusters.

Additionally, there has been increased interest in running unstructured grid based CFD
solvers. Achieving good performance for such solvers is more difficult due to their data-
dependent, irregular memory access pattern. Work in this area includes that of Klöckner
et al. [10], who have implemented discontinuous Galerkin methods over unstructured grids.
In previous work [5] the present authors presented results on running an element-based,
finite volume Euler solver on a Tesla 10 series card, which achieved a speedup of nearly a
factor of 10x over an OpenMP parallelized CPU code running on a quad-core Intel CPU.

The purpose of the present effort is to obtain such as performance gain in the context
of a code used to perform productions runs. The code in consideration is FEFLO, an
adaptive, edge-based finite element code for the solution of compressible and incompress-
ible flow. This code has a long history of relevant applications involving compressible
flow simulations in the areas of supersonic jet noise, transonic flow, store separation, and
blast-structure interaction, as well as incompressible flows including free-surface hydro-
dynamics, dispersion, and patient-based haemodynamics. The code is written primarily
in Fortran 77, and has already been ported to vector, shared memory and distributed
memory machines using OpenMP for the former and MPI for the latter.

In previous work [6] the present authors provided a preliminary report of progress made
implementing a Python script to automatically translate FEFLO to GPUs, including
(i) converting OpenMP loops to CUDA kernels while exposing finer-grained parallelism,
(ii) detecting GPU arrays and enforcing consistency across subroutine calls, (iii) using
an array layout appropriate for meeting coalescing requirements, (iv) overriding certain
subroutines with custom implementations, (v) automatically handling GPU array IO and
memory transfer, and (vi) tracking subarrays across subroutine calls. This Python script
now produces code which runs from start to finish on the GPU. In this presentation, we
will review the rationale for this approach, along with its key features and limitations,
describe its application to FEFLO, and present the results of a variety of runs performed
for validation purposes, along with preliminary performance measurements.
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