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Abstract. Propagation of parametric uncertainty through a physical model is investi-
gated for the problem of methane thermal partial oxidation within inert porous media.
This reforming process is typically used to produce synthesis-gas (rich in H2 and CO)
that is important for the hydrocarbon synthesis industry, as well as for some fuel cell type
operation. The premixed combustion model includes detailed chemistry and solves the gas-
and solid-phase energy balances coupled by convective heat exchange, including radiative
heat transfer in the solid-phase. The uncertainty quantification problem is addressed us-
ing a non-intrusive spectral projection based method, which allows one to use the original
deterministic model without requiring modifications in the source code. The present study
focusses on uncertainties existing in the parameters related with the porous media heat
transfer phenomena. The uncertain parameters are considered to have a half circle Beta
distribution and their probabilistic information is estimated based on producers or exper-
imental sources. Numerical predictions of the model stochastic solutions are obtained for
temperature and species profiles and for the laminar burning velocity. The numerical re-
sults denote that the uncertainties in the model parameters are relevant for confidence on
predicting the synthesis-gas constitution and the burning velocity.
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1 INTRODUCTION

High Temperature Fuel Cell based systems, operating on the basis of synthesis-gas
(consisting mainly of H2 and CO) generated from hydrocarbon reforming, are an efficient
way of using hydrocarbon fuels. Among all the conventional hydrocarbon fuels, methane
is widely available in nature and has the higher hydrogen to carbon volumetric ratio;
therefore, it is potentially suitable for synthesis-gas production.

Among the several techniques used to produce synthesis-gas from hydrocarbons, the
Thermal Partial Oxidation (TPOx) offers several advantages, such as: absence of catalysts
which eliminates the catalyst deactivation problems; no need for external heat sources and
additional feeds like water; good process dynamic response; and applicability to almost
all hydrocarbons. However, it shows comparatively low hydrogen yield and the tendency
to produce soot [1].

The slow reaction rates at low adiabatic flame temperatures existing in the TPOx
process may originate flame instability problems. Therefore, a practical solution is to use
Inert Porous Media (IPM) based reactors, in which the higher heat recirculation from the
hot products to the reactants, provided by the solid matrix, increases the reaction rates
and the stability of the process, improving its operational characteristics when compared
to free-flame techniques [2]. Reviews on IPM combustion can be found in [3, 4].

In order to capture the main features of premixed combustion processes within IPM,
one-dimensional models are typically employed and, generally, the solid-phase energy
balance is solved taking into account radiative heat transfer and is coupled by convective
heat exchange with the gas-phase energy balance, see, e.g. [5, 6, 7]. A major source of
parametric uncertainty in these models is typically related with the conductive, convective
and radiative heat transfer phenomenas induced by the IPM, which characterization rely
on correlations and coefficients with large uncertainty levels [8, 9, 10]. The value of these
parameters depends mainly on the inherent uncertainties existing in the porous material
composition and fabrication process [11]. Furthermore, it is important to quantify the
accuracy of the numerical predictions in order to establish the confidence intervals for the
process behavior, such as, temperatures distribution or exhaust gas composition.

Several stochastic approaches are available nowadays in order to quantify the propaga-
tion of uncertainty from the input parameters into the model outputs. Spectral Projection
(SP) methods, based on Polynomial Chaos (PC) expansion [12, 13, 14], are more appro-
priate and suitable for large degree of parametric uncertainty than the computationally
expensive Monte Carlo (MC) methods or other methods limited to small uncertainty
levels, see, e.g. [15, 16]. However, PC based methods require the model parameters to
be characterized as aleatory uncertainties, i.e., it is presumed that sufficient probabilis-
tic information exists about the parameters [14]. In SP methods, the uncertain model
parameters are made dependent on additional random dimensions along with time and
space and the stochastic variables of the model are projected on these random dimensions
using appropriate PC expansions. The objective of SP methods is to calculate the PC ex-
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pansion mode coefficients, which are then used to extract probabilistic information about
the stochastic model solution, such as, statistics, Confidence Intervals (CIs), Probability
Density Functions (PDFs) or sensitivity to parametric uncertainty.

SP methods may be formulated using two different approaches: intrusive and non-
intrusive [13, 14]. In the Intrusive SP (ISP) approach, the model governing equations are
reformulated in order to directly propagate the uncertainty through the model during
the simulation, see, e.g. [17]. Although this approach is effective, it may not be practi-
cally suitable for commercial or complex codes. The Non-Intrusive SP (NISP) approach
evaluates a posteriori the PC expansion mode coefficients of the stochastic model solu-
tion by using deterministic solution samples. This approach shares with MC methods
the advantage of using the original deterministic code as a black box. However, as the
number of uncertain parameters increases, it requires sophisticated sampling methods to
be implemented such that it becomes competitive with the ISP approach [13, 18].

In the present study, the propagation of parametric uncertainty is quantified for
a model of methane-air TPOx within IPM by applying the NISP approach. Uncertainty
is prescribed in several input parameters related with the IPM heat transfer phenomena.
Deterministic solution samples, required for the NISP approach, are obtained with a one-
dimensional model that includes detailed chemistry and takes into account the gas- and
solid-phase energy balances coupled by convective heat exchange, including radiative heat
transfer in the solid-phase. Stochastic solutions are calculated for some relevant variables,
such as, temperature and species profiles, and burning velocity, in order to obtain error
bars for these solutions and to identify dominant parametric uncertainties.

2 COMPUTATIONAL MODELING

The propagation of parametric uncertainty through the physical model into the output
variables is quantified in a non-intrusive manner by using a deterministic model of the
methane TPOx process within IPM. This section describes the deterministic model, along
with the prescribed uncertain parameters, as well as the algorithm used to quantify the
propagation of parametric uncertainty.

2.1 Methane TPOx Model

The methane TPOx process within IPM is simulated with a premixed combustion
model that is a modified version of the PREMIX code [19]. The model incorporates
the solid-phase energy balance (including radiative heat transfer) and the heat exchange
between gas- and solid-phase. The following assumptions are also considered: one-
dimensional geometry, laminar combustion, inert homogeneous porous material, constant
pressure and negligible catalytic effects. Thus, the governing equations for mass and
gas-phase species balance are given as:
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Mass Balance

∂(φρg)

∂t
+
∂(φρgu)

∂x
= 0 (1)

Species Mass Fraction Balance

φρg
∂Yk

∂t
+ φρgu

∂Yk

∂x
+
∂(φρgvkYk)

∂x
− φω̇kMWk = 0 (2)

where vk is the diffusion velocity and ω̇k the production rate of the k th species. Eqs. (1)
and (2) assume the usual form of free-flame problems, however, with the IPM porosity
(φ) multiplying all fluxes. The energy balances for the gas- and solid-phase are given as:

Gas-phase Energy Balance

φρguCp,g
∂Tg

∂x
− ∂

∂x

(
φkg

∂Tg

∂x

)
− φ

∑
k

ρgCp,kvk
∂Tg

∂x

+ φ
∑

k

ω̇khk +Hv(Tg − Ts) = 0 (3)

Solid-phase Energy Balance

− ∂

∂x

(
keff

∂Ts

∂x

)
−Hv(Tg − Ts) +

∂Qr

∂x
= 0 (4)

Note that Eqs. (3) and (4) are coupled by the convective heat exchange term Hv(Tg −
Ts), in which the volumetric convective heat transfer coefficient (Hv) is described by the
following correlation [20]:

Nu = 0.3 + 0.664Pr1/3Re1/2 Nu =
Hvdp

kgav

Re =
φρgudp

µg

(5)

The IPM is assumed to be a 10 PPI SiC porous foam. The thermal conductivity of the
SiC ceramic material (ks) is given as function of the solid-phase temperature (Ts) [21].
The effective IPM conductivity (keff ), appearing in Eq. (4), is obtained by the parallel
arrangement model: keff = (1− φ)ks (assuming ks >> kg) [22].

Regarding the thermal radiation modeling, the solid-phase is assumed to be a diffuse,
grey body together with a non-participating gas-phase. The radiation heat transport term
∂Qr/∂x, in Eq. (4), is obtained from the solution of the one-dimensional radiative heat
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transfer equations, which are numerically solved using the Discrete-Ordinates method (S2

approximation) [23].
The species production rates (ω̇k) of the methane TPOx process, required in Eqs. (2)

and (3), are calculated using a C1−C2 detailed reaction mechanism (featuring 30 species
and 154 elementary reactions) that is based on the model of Lindstedt et al. [24].

A schematic of the computational domain is shown in Figure 1, along with a rep-
resentative temperature profile of a submerged flame. The IPM inlet and outlet surfaces
coincide with the boundaries of the computational domain. These are extended upsteam
and downstream far from the reaction front region in order to ensure that the submerged
flames are ’blind’ to the boundaries.
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Figure 1: Representation of the computational domain (L = 1 m), including deterministic temperature
and main species profiles for a submerged TPOx reaction with the following mixture conditions: λ = 0.4
and Tin = 823 K.

Regarding the boundary conditions (b.c.) imposed, the gas-phase species balance,
Eq. (2), and the gas-phase energy balance, Eq. (3), are closed with Dirichlet and Neumann
b.c. at the inlet and outlet of the computational domain, respectively. The b.c. for the
mass balance, Eq. (1), is implicitly imposed by fixing the flame location. This is done by
prescribing the gas-phase temperature at one point, see [19]. The inlet and outlet b.c. for
the solid-phase energy balance, Eq. (4), are given by energy balances at the IPM surfaces:

Solid-phase Inlet b.c.

− ks
∂Ts

∂x
−Hs(Tg − Ts) + εσ(T 4

s − T 4
in) = 0 (6)
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Solid-phase Outlet b.c.

ks
∂Ts

∂x
−Hs(Tg − Ts) + εσ(T 4

s − T 4
out) = 0 (7)

where Hs = Hv/av; Tin and Tout are assumed to be equal to the gas-phase temperature at
the inlet and outlet of the computational domain, respectively. The b.c. for the radiative
heat transfer equations are specified assuming that the inlet and outlet boundaries of the
computational domain behave as black surfaces and are at a temperature equal to Tin

and Tout, respectively.

2.2 Uncertain Parameters

For the present study, one consider the IPM to be the only source of parametric un-
certainty. The influence of the IPM heat transfer phenomena on the combustion process
model rely on correlations and coefficients that are assumed to possess some uncertainty
level. The prescribed uncertain parameters are: the characteristic pore structure dimen-
sion (dp); the IPM surface area per unit volume (av); the IPM porosity (φ); the solid
conductivity (ks); the radiative extinction coefficient (β); and the radiative scattering
albedo (ω). The β and ω parameters directly influence the one-dimensional radiative heat

uncertain mean UF Ref.
parameter value limits cv

dp 6× 10−4 m 1± 0.25 12.5 % [25]
av 500 m−1 1± 0.40 20 % [25]
φ 0.88 1± 0.06 3 % [25]
ks f(Ts) 1± 0.16 8 % [21]
β 115 m−1 1± 0.18 9 % [8, 9]
ω 0.77 1± 0.18 9 % [8, 9]

Table 1: Stochastic information of the uncertain parameters (where cv is the coefficient of variation
defined as [standard deviation]/[mean value]).

transfer equation system, on which the term ∂Qr/∂x, appearing in Eq. (4), depends.
All the uncertain parameters are assumed to have an half circle Beta distribution, in

order to prevent unrealistic values that could occur with a Normal distribution. Each
parameter distribution is parameterized by multiplying an uncertainty factor UF to the
parameter mean value. This UF presents an half circle Beta PDF centered in 1, and
the respective distribution limits are estimated based on realistic information obtained
from producers or experimental sources. For some parameters, a safety coefficient of 2
is applied in the definition of these limits in order to tolerate possible lacks of proba-
bilistic information. Table 1 resumes the stochastic information used for the uncertain
parameters, as well as the references on which this information is based.
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2.3 Uncertainty Quantification Procedure

This section describes the uncertainty quantification procedure used in the present
work. As mentioned earlier, it is used a Non-Intrusive Spectral Projection (NISP) ap-
proach, where the deterministic model (described in section 2.1) is used in order to further
post-process information about the propagation of uncertainty from the model input pa-
rameters into the model solution variables. This approach is preferred since it does not
require a reformulation of the model governing equations, which is impractical for the
present case due to the complexity of the model and the high number of uncertain pa-
rameters.

Let X be an uncertain parameter of the model, and f a corresponding solution variable.
In general, for a prescribed PDF of X, one can represent X(ξ) using a PC expansion given
by Eq. (8) in terms of a random variable ξ;

X(ξ) =

p∑
j=0

cXn In(ξ) (8)

with known expansion mode coefficients cXn , and where In, for n = 0, .., p, are orthogonal
polynomials of order n. Depending upon the PDF of X there exists an optimal set of
orthogonal polynomials In, with an associated random variable ξ, which minimizes the
required number of terms in the PC expansion (8). If Normal or LogNormal PDFs are
chosen for X then Hermite polynomials associated to a standard Normal random variable
ξ are preferred; for Beta PDFs, Jacobi polynomials associated to a standard Beta random
variable ξ should be used; a complete description of PC basis can be found in [12].

The problem can be further generalized forN independent uncertain parameters (X1, ..., XN),
with each one being associated with a stochastic dimension ξi, i = 1, ..., N , forming a
multi-dimensional random space. In a general form, the multi-dimensional orthogonal
polynomials are given as;

In(~ξ) =


I0
I1(ξi) , i = 1, ..., N
I2(ξi, ξj) , i, j = 1, ..., N ; j ≤ i
I3(ξi, ξj, ξk) , i, j, k = 1, ..., N ; k ≤ j ≤ i
...

(9)

where ~ξ = (ξ1, ..., ξN) is the vector of random variables. For each polynomial order n
there exist a number, equal to max{1; [N · ... · (N + n − 1)]/n!}, of distinct polynomials.
These multi-dimensional polynomials can be generated from the uni-dimensional polyno-
mials using tensor products. For notational convenience, the polynomials In(~ξ) are often

renumbered in a convenient form in order to describe them with only one index, Φj(~ξ),

where there is a one-to-one correspondence between In(~ξ) and Φj(~ξ) [12]. These polyno-
mials are orthogonal to each other with respect to their inner product which takes the
form;
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< ΦiΦj >=

∫
ΦiΦjW (~ξ)d~ξ =< Φ2

j > δij (10)

where δij is the Kronecker delta function; W (~ξ) = w(ξ1) · ... · w(ξN) is the weighting
function of the corresponding PC basis {Φj}, and w(ξi), ∀i ∈ {1, ..., N} takes the same
form of the PDF of ξi, see, e.g., [12].

The stochastic solution variable f(~ξ) can also be represented in a similar manner as in
Eq. (8), by using a multi-dimensional PC expansion, given as;

f(~ξ) =
P∑

j=0

cfj Φj(~ξ) (11)

where cfj are the unknown PC expansion mode coefficients of f(~ξ), and P + 1 = (N +
p)!/(N !p!) is the total number of terms in the PC expansion (with p being equal to the
maximum polynomial order of the expansion).

Starting with Eq. (11) and applying the orthogonality relation in Eq. (10) on the
complete basis < · Φk >, the coefficients cfj can be obtained as;

cfk =
< f(~ξ)Φk >

< Φ2
k >

, k = 0, ..., P (12)

The final objective is to determine the coefficients cfk , which allow the reconstruction of

the stochastic solution f(~ξ), using Eq. (11). This can be performed in a very effective
manner using the ISP approach, i.e., by solving the evolution of cfk . However, that implies
the reformulation of the model governing equations, which is impractical for the present
case. Therefore, the alternative NISP approach is preferred, where the deterministic
solution fd is evaluated for different values of (X1, ..., XN). Further, by using Eq. (12),
the coefficients cfk can then be calculated from these deterministic solutions and thereby

the PC expansion of f(~ξ) can be easily reconstructed from Eq. (11).
The overall NISP approach used here involves the following procedure:

1. According to the prescribed PDF for the parameters Xi, i = 1, ..., N , the respective
random variables ξi, i = 1, ..., N assume a distribution type associated to a partic-
ular PC basis {Φj}. The vector of random variables, ~ξ = (ξ1, ..., ξN) is sampled on

{~ξn}Sn=1 selected collocation points, as explained further.

2. For each sample ~ξn, the corresponding sample vector of input parameters, (Xn
1 , ..., X

n
N)

is calculated from Eq. (8), or alternatively, from a know function Xi = g(ξi).

3. The solution of the deterministic model fn
d is computed for all the realizations of

the input parameters vector, {(Xn
1 , ..., X

n
N)}Sn=1.
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4. The PC expansion mode coefficients cfk are then obtained by numerically solving Eq.
(12). The integral in the numerator of Eq. (12) is here approximated by a Gauss
quadrature [13, 14]. This implies that each random variable ξi, ∀i ∈ {1, ..., N}, in

the vector ~ξ, must be sampled on Si different collocation points (Gauss quadrature
points), which are the roots of the unidimensional orthogonal polynomial Ir(ξi)
of order r = Si. The required number of multidimensional samples S =

∏N
i=1 Si

depends upon the smoothness of the stochastic solution f(~ξ). By applying the Gauss
quadrature in order to compute the integral in the numerator of Eq. (12), the mode
coefficients of the stochastic solution PC expansion are numerically approximated
as;

cfk ≈

S1,...,SN∑
r1,...,rN=1

fd(Xr1 , ..., XrN
)Φk(ξr1 , ..., ξrN

)
N∏

i=1

qri

< Φ2
k >

, k = 0, ..., P (13)

where (ξri
, qri

), r = 1, ..., Si, are the Gauss quadrature points and corresponding
weights, sampled on the random variable ξi, ∀i ∈ {1, ..., N}.

The post-processing of information about the stochastic solutions is performed using
the PC expansion mode coefficients calculated previously. The solution statistics (mean
and standard deviation) are easily obtained by applying the properties of orthogonal
polynomials to the definition of each statistics. The solutions PDFs are approximated by
employing Kernel Density Estimation techniques [26], and the CIs are further calculated
from the respective Cumulative Density Functions (CDFs).

3 NUMERICAL RESULTS

The parametric uncertainty quantification results for the model of methane-air TPOx
within IPM are presented in this section. Propagation of parametric uncertainty through
the model is quantified prescribing uncertainty in six parameters (N = 6) related with
the IPM heat transfer phenomena, see Table 1. The uncertainty quantification is first
investigated for a particular set of methane-air TPOx conditions: air-fuel ratio (λ) of 0.4
and inlet mixture temperature (Tin) of 823 K. Further, the stochastic solution variables
are calculated for different values of λ and Tin in order to investigate their influence on
the uncertainty propagation.

3.1 Uncertainty in the IPM heat transfer parameters

The PC expansion coefficients of the stochastic solution variables are obtained applying
the NISP approach described in section 2.3. The stochastic solution variables are approx-
imated by second-order PC expansions, which was found to be sufficient for accuracy in
the present case. The deterministic solution space is sampled using Si = 3 collocation
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points in each uncertain parameter, therefore, requiring 36 = 729 runs with the determin-
istic model. The computational time required for the total calculation was ∼ 300 min in
a P4 1.7 GHz/ 1024 MB (∼ 240 min for the deterministic solution samples and ∼ 20 min
for the stochastic information post-processing).
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Figure 2: Stochastic mean solution profiles, along with the 50 % and 95 % CIs and standard deviation
(σ) for the methane-air TPOx (λ = 0.4; Tin = 823 K): (a) gas-phase temperature; (b) solid-phase
temperature.

Figures 2(a) and (b) show the stochastic mean solution profiles for the gas-phase tem-
perature (Tg) and solid-phase temperature (Ts), respectively, along with the 50 % and
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95 % CIs and standard deviation (σ). One can observe from the figures that the un-
certainty level of both Tg and Ts is maximum at the flame front region, where the heat
recirculation takes place. Far upstream and downstream from the flame front region, the
uncertainty level falls close to zero since there is negligible heat transfer taking place.
However, in the downstream region there is some remaining uncertainty that decreases
slowly and it can be explained by the ongoing slow reforming reactions, which affect the
downstream heat release. Furthermore, one may also note that the uncertainty level of
Ts is slightly higher than the one of Tg, which is in agreement with the model set-up since
the uncertainty sources are directly related with the solid-phase heat transfer.
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Figure 3: Stochastic mean solution profiles, along with the 50 % and 95 % CIs and standard deviation
(σ) for the methane-air TPOx (λ = 0.4; Tin = 823 K): (a) H2 molar fraction; (b) CO molar fraction; (c)
C2H2 molar fraction; (d) laminar burning velocity PDF.
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Figures 3(a), (b), (c) present the stochastic mean solution profiles for the H2, CO and
C2H2 molar fractions, respectively, along with the 50 % and 95 % CIs and standard
deviation. One can observe from these figures that the uncertainty level of XH2 , XCO

and XC2H2 decreases along the post-flame region, however, in a very slow manner due to
the ongoing reforming reactions referred above. Furthermore, the quantitative compar-
ison of the standard deviation with the respective mean value, reveals that the relative
uncertainty level of XH2 , XCO is lower than the one of XC2H2 .

The PDF of the laminar burning velocity (SL) is shown in Figure 3(d), along with
the 50 % and 95 % CIs, mean value and standard deviation. One can observe from the
figure that the PDF presents a small asymmetry as well as positive and negative tails, in
opposition to the half circle Beta PDF prescribed to the uncertain parameters. This can
be explained by the non-linearities in the governing equations that affect the uncertainty
propagation through the physical model.

Figures 4(a), (b), (c), (d), (e) and (f) present the PC expansion coefficients that rep-
resent the first-order contribution of the uncertain parameters to the total uncertainty in
the stochastic solutions for Tg, Ts, XH2 , XCO, XC2H2 and SL, respectively. One can iden-
tify from these figures which are the dominant uncertain parameters. One may note that
the relative contribution of each parameter to the total uncertainty is not the same for all
the solution variables and depends on the axial coordinate (x). However, the contribution
of each parameters, ordered from the strongest to the weakest, is generally the following:
av, φ, dp, ks, ω and β. The strong influence of av can be attributed to the high level of
uncertainty prescribed to it, see Table 1. Regarding the φ parameter, its strong influence
is rather explained by the way it deeply affects the model governing equations, although
it presents a low level of uncertainty, see Table 1.
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Figure 4: Spectral decomposition of the stochastic solution, showing the PC expansion coefficients that
represent the first-order contribution of the each uncertain parameter to the total uncertainty for the
methane-air TPOx (λ = 0.4; Tin = 823 K): (a) gas-phase temperature; (b) solid-phase temperature; (c)
H2 molar fraction; (d) CO molar fraction; (e) C2H2 molar fraction; (f) laminar burning velocity.
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3.2 Influence of inlet mixture conditions on uncertainty propagation

In the following, one investigates the effect of the air-fuel ratio, λ, and the inlet mixture
temperature, Tin, on the relative uncertainty level of the stochastic solution variables.
Simulations are carried out for λs is the range of 0.38 − 0.42 and Tin in the range of
723− 923 K, and the relative uncertainty level is quantified by the coefficient of variation
(cv = σ/Mean).

The numerical results reveal that the influence of λ on the relative uncertainty level
of Tg, Ts and SL is negligible. The maximum cv value for Tg and Ts is in the range of
1.98 ± 0.04% and 2.68 ± 0.07%, respectively, and for SL, the cv value is in the range of
5.68± 0.06%. Although the influence of Tin on Tg, Ts and SL is slightly stronger that the
influence of λ, it continues to be negligible. The maximum cv value for Tg and Ts is in
the range of 2.10 ± 0.48% and 2.75 ± 0.41%, respectively, and the cv value for SL is in
the range of 5.66± 0.13%. Furthermore, the cv value increases (negligibly) with λ for all
the three stochastic variables (Tg, Ts and SL) and a similar evolution of cv is found with
respect to Tin.

Figures 5(a), (c) and (e) show the effect of λ on the cv profile for XH2 , XCO and XC2H2 ,
respectively. The cv of XC2H2 assumes values approximately one order of magnitude
higher than the cv values of XH2 and XCO. Furthermore, the cv of XC2H2 increases with
λ, however, the opposite is found for XH2 and XCO.

Figures 5(b), (d) and (f) show the effect of Tin on the cv profile for XH2 , XCO and
XC2H2 , respectively. In a similar way to what was found for λ, the cv values of XC2H2 are
approximately one order of magnitude higher than the ones of XH2 and XCO. The cv of
XC2H2 also increases with Tin and the opposite happens for XH2 and XCO.

Although the influence of λ and Tin on the cv profiles for the XH2 and XCO is non
negligible, the low values assumed by cv for both XH2 and XCO make this finding less
relevant. However regarding XC2H2 , the high level of relative uncertainty denoted by the cv
profile makes the influence of λ and Tin to be importante on the uncertainty quantification
for XC2H2 .
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Figure 5: Effect of the inlet mixture conditions on the coefficient of variation for the methane TPOx.
Effect of the air-fuel ratio λ fixing Tin = 823 K: (a) H2 molar fraction; (c) CO molar fraction; (e) C2H2

molar fraction. Effect of the inlet mixture temperature Tin fixing λ = 0.40: (b) H2 molar fraction; (d)
CO molar fraction; (f) C2H2 molar fraction.
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4 CONCLUSIONS

The propagation of parametric uncertainty through a physical model is investigated for
the problem of methane-air TPOx within IPM. The combustion model includes a detailed
C1−C2 reaction mechanism and solves the gas- and solid-phase energy balances coupled
by convective heat exchange, including radiative heat transfer in the solid-phase. The
parametric uncertainty quantification is carried out by applying a Non-Intrusive Spectral
Projection based method, which uses the deterministic physical model as a black box.
Uncertainty is prescribed in six model parameters related with the IPM heat transfer
phenomena. These uncertain parameters are modeled as an half circle Beta distribu-
tion and their probabilistic information is prescribed based on producers or experimental
sources. The PC expansion mode coefficients of the stochastic solution variables are ob-
tained using a set of deterministic solutions, which are previously calculated sampling the
uncertain parameters on the Gauss-Jacobi quadrature points of the Beta distributions.
Statistics, CIs and PDFs are post-processed from the PC expansion coefficients for the
gas- and solid-phase temperatures, H2, CO and C2H2 molar fractions and laminar burn-
ing velocity. The uncertainty quantification analysis is first carried out for a particular
set of methane-air TPOx conditions: air-fuel ratio of 0.4 and inlet mixture temperature
of 823 K. Further, it is investigated the effect of the air-fuel ratio and inlet mixture
temperature on the stochastic solution variables.

The main conclusions can be drawn from the present study:

1. Gas- and solid-phase temperature predictions presented a higher uncertainty level
at the flame front region, and the uncertainty level for the solid-phase temperature
was slightly higher than the one for the gas-phase temperature.

2. The uncertainty level in predicting the H2, CO and C2H2 molar fractions varies
smoothly along the post-flame region. Moreover, the relative uncertainty level for
C2H2, given by cv, is one order of magnitude higher than the one for H2 and CO.

3. The comparison of the first-order PC expansion coefficients show that, in general,
the IPM specific surface area and the IPM porosity are the main responsible for the
uncertainty in the stochastic solution variables, and in opposition, the parameters
directly related with the radiative heat transfer (extinction coefficient and scattering
albedo) present the weakest contribution.

Regarding the effect of the air-fuel ratio, λ, and inlet mixture temperature, Tin, on the
the stochastic solution variables, the additional conclusions are found:

4. The influence of the air-fuel ratio and inlet mixture temperature on cv is negligible
for the gas- and solid-phase temperatures and the laminar burning velocity; however,
not for the H2, CO and C2H2 species molar fractions.

5. The cv increases with the air-fuel ratio and inlet mixture temperature for the C2H2
species and the opposite was found for the H2 and CO species.
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