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Abstract. The pulsatile flow field in the human lung is numerically and experimentally
investigated. The realistic lung geometry of a human subject was obtained down to the sixth
generation of bifurcation and used as a tracheobronchial model. The numerical analysis
is based on a Lattice-Boltzmann method which is particularly suited for flows in extremely
intricate geometries such as the upper human airways. The measurements are performed
via the particle-imaging velocimetry method in a transparent cast generated from the orig-
inal dataset. Experimental and numerical results are compared and a thorough discussion
of the three-dimensional flow structures emphasizes the unsteady character of the flow
field. At inspiration, the primary flow shows clear separations and is highly influenced by
secondary flow structures. In contrast, at expiration the primary flow distribution is far
more homogeneous with a concurrent higher value of vorticity. It is evidenced that the
asymmetric geometry of the human lung plays a significant role for the development of
the flow field in the respiratory system. Secondary vortex structures and their temporal
formation are analyzed and described in detail for two respiration frequencies, revealing
that the qualitative flow phenomena are invariable if a certain mass flux rate is exceeded.
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1 INTRODUCTION

From a fluid mechanics point of view the human lung is a highly complex pipe network
at progressively decreasing diameters. Besides air transport and exchange of carbon
dioxide and oxygen in the pulmonary alveoli, the air has to be heated up and moisturized
and solid particles are removed from the flow at inspiration. At expiration the loss of
heat and humidity has to be limited. Thus, the requirements are challenging and several
processes take place at the same time inside the respiratory tract.

The detailed analysis of the flow processes in the upper human airways is a must
to develop aerosol drug delivery systems and to improve the efficiency and usability of
artificial respiration systems. Numerous experimental and numerical investigations of
lung flow have been conducted so far.1–4 However, due to the high geometric intricacy
of the human lung, there is still a considerable amount of uncertainty concerning the
very complex flow field and fundamental results for realistic lung models are still rare.
Many investigations are based on simplified models of the lung structure. The most
popular of these models is the so-called Weibel model5 which describes the bronchi as
a symmetric tree structure of subsequent bifurcating pipes consisting of 23 generations.
However, in most of the studies only the first three to five generations are considered and
a planar representation is favored for simplicity. In1 detailed experimental studies were
performed for a planar Weibel model where fundamental flow phenomena like m-shaped
velocity profiles and counter-rotating vortices were described. It was shown in numerical
studies,2,6 however, that the flow field for the non-planar configuration differs significantly
from the planar case. Studies considering asymmetric bifurcations,3 non-smooth surfaces7

and CT-based models4,8, 9 show that the inspiration flow in the upper human airways is
asymmetric and swirling. These results emphasize the importance of realistic airway
models.

Generally, the aforementioned results show that an accurate lung geometry, i. e., CT
data or a real human lung cast, is required to obtain physiologically relevant results.
Grosse et al.10,11 experimentally investigated the steady and oscillating flow field
in a silicon model of a human lung cast that covers the trachea and the bronchial tree
down to the sixth generation. It was found that the flow structures mainly depend on
the instantaneous Reynolds number and on the Womersley number. Since in the
experiment only a parallel cutting plane could be taken into account, the investigation of
vortical structures was limited to a detailed qualitative analysis.

The present work focuses on the numerical investigation of the unsteady three-dimen-
sional flow for the lung model used by Grosse et al.10 for a normal respiration at rest
and for an increased rate of respiration. Numerical results are compared with experimental
findings and flow structures are described in detail. The flow field is simulated via a
Lattice-Boltzmann method (LBM).12 Unlike former numerical investigations, in which a
simplified geometry was used, the present method can be efficiently applied to variable,
realistic airway geometries. For instance the flow field downstream of the laryngeal region
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was recently investigated in13,14 by an LBM. In combination with an automated grid
generation15 based on CT-data this method offers an efficient tool for biomedical flow
problems. Since the numerical method is capable of reproducing small-scale features of the
entire lung flow, the results support to fundamentally understand respiratory mechanisms.
Thus, the numerical results allow an extended analysis of the three-dimensional flow
structures observed in the experiment.

The structure of this paper is as follows. First, the lung model is specified. Then,
numerical and experimental results are compared and discussed. Finally, the findings are
summarized and some conclusions are drawn.

2 THE LUNG MODEL

The geometry for the numerical investigations is based on a radiological scan taken
from a cast of a human lung including the larger part of the trachea down to the sixth
generation of the bronchial tree. The digital geometry reconstruction encompasses the pre-
processing, the segmentation, the surface generation, and the iterative surface smoothing.
Based upon the surface data a computational mesh is automatically generated by an
in-house grid generator.

The same lung data was used to generate the silicon model for the PIV measurements in
several manufacturing processes including corn starch rapid prototyping, surface coating,
inlet insert attachment, transparent silicon (RTV815) casting, hot water wash-out, and
manual channel drilling of the model’s exits. These steps lead to models which allow flow
field measurements within organic geometries and give the opportunity to understand
in-vivo flow phenomena.

The geometry is simplified in the sense that any elasticity of the configuration is not
considered. However, the upper airways, as they are modeled here, are supported by
chondral springs and can be assumed as the stiffest part of the lung. The physiological
lung is an enclosed system with spatially varying tissue properties that lead to non-linear
pressure-volume relations. The resulting spatial pressure distribution yields equilibrium
processes which cannot be accounted in a model having open ends. At the tracheal cross
section a fully developed laminar inflow is imposed by a Dirichlet boundary condition in
the numerical analysis and by an extended trachea in the experiment.

Assuming a static geometry and neglecting any compliance influence of the lower lung
parts, the present method delivers a fundamental insight into the lung flow, including the
propagation of ventilation, frequency dependent spatial and temporal mass flow rates,
shear stresses, dead water regions, and secondary flow structures. Fig. 1(a) shows the
final experimental model from a dorsal point of view and in Fig. 1(b) the model of the
numerical simulation is illustrated.
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(a) (b)

Figure 1: The employed lung model: (a) silicon model for PIV measurements, (b) surface data and
computational grid.

3 THE LATTICE-BOLTZMANN METHOD

Next, the Lattice-Boltzmann Method (LBM), is concisely described. The LBM is a
solution algorithm for nonlinear partial differential equations and it arose from Lattice
Gas Cellular Automata (LGCA) which were introduced by Frisch et al.16 in 1986.
It was shown by the authors that a microscopic model describing molecular dynamics
with collisions which conserve mass and momentum leads in the macroscopic limit to
the Navier-Stokes equations if the underlying lattice possesses a sufficient symmetry. An
extensive description of both methods, the LGCA and the LBM, is given in.12,17,18 The
most common variant of the LBM is based on the Boltzmann equation with a simplified
collision operator proposed by Bhatnagar, Gross, and Krook19 called BGK equa-
tion. The velocity space is discretized into a set of n molecular velocities ci with their
associated distribution functions fi(x, t). The discrete BGK equation without external
forcing reads

fi(x + ci∆t, t+ ∆t)− fi(x, t) = ω (f eq
i − fi) , (1)

where f eq is the Maxwell equilibrium distribution function and ω represents the collision
frequency. The corresponding numerical method is referred to as LBM-BGK method. The
left-hand side of Eq. 1 contains the temporal change and the propagation term, whereas the
right-hand side describes molecular collisions by a relaxation of the distribution functions
towards thermodynamic equilibrium. Therefore, the algorithm of the flow solver is based
on the iterative computation of propagation and collision processes for all cells of the
computational grid. The macroscopic values of density ρ and momentum j are obtained
as base moments of the distribution function which read
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ρ(x, t) =
n∑

i=1

Fi(x, t) (2)

j(x, t) = ρ(x, t)v(x, t) =
n∑

i=1

ciFi(x, t) . (3)

The LBM-BGK describes weakly compressible flows at moderate Reynolds numbers
and it has been shown in the literature20 that it yields indeed solutions to the Navier-
Stokes equations. LBM models are characterized by the number of spatial dimensions m
and the number of discrete velocities n. Therefore, the DmQn notation was introduced
by Qian et al.21 Favored models in two and three dimensions are D2Q9, D3Q19, and
D3Q27, since they offer a sufficient lattice symmetry. The discrete velocity set for the
D3Q19 model is shown in Fig. 2.

Figure 2: The discrete velocity set of the D3Q19 model.

Since the LBM formulation is based on a uniform Cartesian mesh, it is highly adapted
for parallel processing and it offers an efficient boundary treatment for fixed walls. The
ability of reproducing variable organic geometries makes this method well suited for
biomedical applications.

In this study the flow in the upper human airways was simulated by a D3Q19 LBM-
BGK model with a modified equilibrium distribution function for incompressible flows
as proposed by Zou et al.22 Solid wall nonslip boundary conditions were realized by
an interpolated bounce-back rule.23 A Dirichlet boundary condition imposing a fully
developed laminar velocity profile was prescribed at the tracheal cross section, whereas
a zero gradient condition was employed at the numerous outlets. The computational
grid was automatically generated from surface data by an in-house grid generator15 and
consists of 2.5 million cells. It was shown, e. g., in14 that the numerical method allows a
detailed investigation of the three-dimensional flow field in the primary bronchi.
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4 RESULTS

The time dependent inhalation and exhalation flow field has been investigated for a
peak mass flux of 351 ml/s corresponding to a peak Reynolds number of Remax = 1600.
The value of the Reynolds number is based on the hydraulic diameter of the trachea
dhyd = 18.3 mm. To investigate the unsteady behavior of the flow field during respira-
tory ventilation, simulations and measurements were performed for a normal respiration
at rest at frequency f1 and for a higher respiration frequency f2 = 2f1. That is, the
breathing periods are T1 = 4 s and T1 = 2 s which correspond to Womersley numbers
being defined by α = 0.5f

√
2πf/ν, where the classical notation is used, α1 = 3.64 and

α2 = 5.15, respectively.

The temporal variation of the mass flux was prescribed by a sinusoidal curve. The data
was recorded after a transient time of one respiration cycle. In the following section numer-
ical and experimental results are compared in a distinct cross section. Subsequently, the
numerical data is further analyzed concerning the development of the three-dimensional
flow structures.

4.1 Comparison of experimental and numerical data

In this section numerical and experimental data are compared in order to evidence the
quality of the LBM solution. A brief comparison is presented for one plane of the first
bifurcation which is defined in Fig. 3(a). This region was chosen to globally evidence the
mass flux into the lower bifurcations. Moreover, the phase angles at maximum inspiration
and expiration can be compared with steady flow cases.

The comparison of the data at α1 and α2 shows no significant differences in the flow
structures in this plane, which is why in the following only the solutions at α1 = 3.64 are
discussed. Fig. 4 contains numerical and experimental results at different phase angels φ of
a sinusoidal ventilation cycle, where φ = 0◦ and φ = 180◦ represent maximum inspiration
and expiration, respectively. To emphasize the flow direction the vectors possess uniform
length. The magnitude of the absolute velocity is normalized on the bulk velocity in cross
section I in Fig. 3(b) at maximum inspiration. In the following, the terms upper and lower
denote the upper and lower half of the main bronchi (bronchi principales), respectively.
Note that there is a third sub-branch at the end of the posterior right main bronchus.
The brief discussion of the numerical and experimental findings for various phase angles
φ = 0◦, 90◦, 180◦, 270◦ shows the quality of the solutions of the Lattice-Boltzmann method
under pulsatile flow conditions.

The numerical and experimental data match satisfactorily. The slight differences of
the LBM and PIV data are due to small deviations of the lung model and the original
geometry data. Moreover, the discrepancies near the wall appear to be caused by a lack
of seeding particles in the flow regimes resulting in a decreased resolution of the velocity
distribution. Finally, the boundary conditions of the numerical and the experimental setup
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(a) (b)

Figure 3: (a) Reference plane for the comparison of experimental and numerical data; (b) Cross sections
for the investigation of secondary flow structures.

do not perfectly coincide, since the pipe extensions downstream of the sixth generation
are not taken into account in the simulation and the temporal change of the volume flux
is not perfectly sinusoidal in the experiment. Keeping these facts in mind, the numerical-
experimental agreement can be considered convincing.
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Figure 4: Time resolved data for the second half of a respiration cycle at rest, i. e., 180◦, 225◦, 270◦ and
315◦; LBM data (left), PIV data (right). The vectors have uniform length and indicate the flow direction.
The gray scale values show the magnitude of the absolute velocity that is normalized by the bulk velocity
at maximum inspiration for a defined tracheal section.
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4.2 Secondary flow structures

In order to obtain a deeper insight into the development of the flow pattern, the
secondary flow structures are further analyzed in this section on the basis of the numerical
solutions. The locations of the various cross sections denoted by I, II, III, and IV are
defined in Fig. 3(b). The flow field in the trachea is depicted for both Womersley
numbers in Fig. 5 at maximum inspiration (φ = 0◦) and in Fig. 6 at maximum expiration
(φ = 180◦). The black lines indicate the reference plane of the flow patterns which were
discussed in the previous section.

(a) (b)

Figure 5: Flow field in the tracheal cross section I described in Fig. 3(b) at maximum inspiration;
(a) α1 = 3.64, (b) α2 = 5.15. The levels of gray indicate the axial velocity magnitude and the arrows
represent the in-plane velocity. The black lines indicate the reference plane described in the previous
section.

(a) (b)

Figure 6: Flow field in the tracheal cross section I described in Fig. 3(b) at maximum expiration;
(a) α1 = 3.64, (b) α2 = 5.15. The levels of gray indicate the axial velocity magnitude and the arrows
represent the in-plane velocity. The black lines indicate the reference plane described in the previous
section.
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At maximum inspiration a well developed velocity profile is observed at α1 the shape of
which is characterized by the geometry of the throat. At α2 the velocity distribution
possesses clear deformations compared to the α1 profile. At maximum expiration strong
vortical structures occur over the whole cross sections which is shown in Fig. 6. These
structures are generated by the asymmetric merging of the air streams from the left and
right principal bronchus. A stagnation point is observed near the right wall just above
the reference plane. Note that unlike the inspiration structures the expiration structures
show no significant dependence on the Womersley number.
In Fig. 7 the flow field at maximum inspiration and expiration at α1 = 3.64 is depicted in
the cross sections II, III, and IV.

At inspiration the main mass flux is located near the lower wall. This corresponds to
the high velocity region shown in Fig. 4 at φ = 0◦. Downstream of the first bifurcation
a pair of counter-rotating vortices develops transporting fluid from the high-speed to the
low-speed region along the outer walls. The right vortex has a center of rotation near
the upper wall and cover most of the upper half of cross section IV. The left vortex is
much smaller and it is located very close to the left wall. Such a vortex pair also was
observed in the steady state simulations in.14 The physics of its generation is related to
the aforementioned Dean vortex. Once the next bifurcation is reached, the vortices do
separate and each one enters a branch of the next higher bronchial generation.
At expiration the streamwise velocity is more evenly distributed than at inspiration. The
mixing of streams coming from the higher generation bronchi generates a shear layer
which yields a swirling region. Two stagnation regions are indicated in Fig. 7. One is
located at the lower wall and develops in the streamwise direction. The other stagnation
region occurs at the left wall and vanishes when the trachea is approached. The in-plane
velocity distribution evidences a strong clockwise rotating vortex near to the upper wall
and more mass flux is coming from the ventral lung lobe.
In conclusion, the findings confirm pronounced secondary flow structures at inspiration
and expiration. The numerical data emphasizes the strong asymmetry of the vortical
structures. It is clear that the vortical flow structures are more intricate at expiration
ensuring an almost perfect wash-out.

5 SUMMARY AND CONCLUSIONS

The pulsatile flow field in a geometrically realistic model of the human lung was nu-
merically and experimentally investigated for two Womersley numbers, α1 = 3.64 and
α2 = 5.15, and a maximum Reynolds number of Remax = 1600. The Lattice-Boltzmann
method proved to be an accurate tool to simulate flows through highly intricate geometries
such as the upper human airways. The numerical findings were validated by particle-image
velocimetry measurements. The overall flow structure at inspiration, which is character-
ized by local recirculation regions, and at expiration, which evidences a more homogeneous
velocity distribution, was shown to be in convincing agreement. Secondary flow structures
known from steady state simulations were clearly identified. A pair of counter-rotating
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II

III

IV

Figure 7: Flow field in the cross sections II-IV; inspiration (left), expiration (right). The axial velocity is
shown by gray scale values and the arrows represent the in-plane velocity. The black lines indicate the
reference plane described in the previous section.
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W. Schröder, G. Eitel, Th. Soodt, A. Henze

vortices and a high-speed region were observed downstream of the first bifurcation in the
left bronchus.
The results reflect the three-dimensional flow pattern inside the highly complex geome-
try of a real human lung. This knowledge is essential for the improvement of artificial
respiration devices and for the development of aerosol drug delivery systems. In future
investigations higher generations of the lung geometry and also the upper airways will be
fully modeled including the nasal cavity and the laryngeal region.
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