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Abstract. We present some applications of adaptive finite element methods to vis-
coelastic flow problems arising from the modeling of polymer liquids. As an example we
consider the Giesekus model. Our special interest is in error estimators either related to
the prediction of certain energy functionals from the continuous model or to independent
physical quantities as the drag coefficient or the flow rate through an orifice.

The flow equations are discretized by a nonconforming finite element method, for which
we have shown the preservation of positivity of the conformation tensor. We employ a
Newton-type iteration with solution of the linear subproblems by a multigrid solver.

The a posteriori error estimation for nonconforming finite element methods requires
special care, already in the case of linear elliptic equations. From a theoretical point
of view, the nonconformity implies the loss of orthogonality. By a careful analysis, this
difficulty can be surmounted and we have recently proven the quasi-optimality of the method
for the Laplace and Stokes equations. Here, the term quasi-optimality refers to the speed
of decrease of the error with respect to the number of mesh cells.

In this talk we are interested in the computation of the drag coefficient of an immersed
body in a polymer liquid. In order to do so, we derive an a posteriori error estimator,
which is used in an adaptive mesh refinement algorithm.

1 INTRODUCTION

Viscoelastic liquids are characterized by a memory effect and an intermediate behavior
between a viscous liquid and an elastic solid. Moreover, they are non-Newtonian fluids.
Their non- Newtonian behavior can be seen in a variety of physical phenomena, which
cannot be predicted by the Navier-Stokes equations. Despite the numerous efforts, the
numerical approximation of viscoelastic flows is still a challenging research area, due to
their intrinsic properties and to the internal coupling between the viscoelasticity of the
liquid and the flow, which is quantified by the Weissenberg number We.

Our contribution is devoted to the computation of the drag coefficient in a polymer
flow, which is a classical problem in the field. We propose to use local mesh refinement
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directly intended to approximate the physical quantity, which is considered as a functional
on the approximation space (goal-oriented error estimation). Following the approach of
[2], we introduce an adjoint problem, the solution of which is intended to measure the
influence of local residuals on the accuracy of the computed functional.

2 MODELING OF POLYMER LIQUIDS

We consider the flow of the polymer liquid described by the following system of equa-
tions, known as the Giesekus model [5] involving the velocity field v, pressure p and
stress-field τ with assumed constant density ρ, viscosity µ:

ρ (vt + v · ∇v)− div τ +∇p = 0, (1)

div v = 0, (2)

τ + λ
(
τt + v · ∇τ −∇vτ − τ∇vT

)
+ α̃τ 2 = 2µD(v). (3)

The last equation (3) is the constitutive equation relating the stress-field τ to the strain-
tensor D(v), involving the relaxation time λ as well as the parameter α̃. The system has
to be completed by appropriate initial and boundary conditions, which is in general a
difficult task.

In the present study, we are interested in permanent flows, vt = τt = 0. Therefore a
variational formulation of (1-3) reads: Find u = (v, p, τ) ∈ (vd, 0, τd) + U such that for all
δu = (δv, δp, δτ) ∈ U

〈ρv · ∇v, δv〉+ 〈τ,D(v)〉 − 〈p, div δv〉 = 0 (4)

〈div v, δp〉 = 0 (5)

〈τ + λ
(
v · ∇τ −∇vτ − τ∇vT

)
+ α̃τ 2, δτ〉 = 2〈µD(v), δτ〉. (6)

The space U and the vector vd and tensor τd incorporate non-homogenuous Dirichlet
boundary conditions (τd is prescribed on the inflow boundary v · n < 0). The natural
boundary conditions implied by (4-6) are σn = 0 with σ = τ−pI. We write (4-6) in short
form as: Find u ∈ ud + U such that for all δu ∈ U

a(u)(δu) = 0. (7)

The considered finite element discretization of (1-3) is based on a nonconforming ve-
locity space as well as piecewise-constant approximations of p and τ (the symmetry of τ
is built in directly). We denote by H a family of locally refined meshes, starting with an
initial mesh h0. A mesh smoothness condition is imposed in H which avoids multiple lay-
ers of hanging nodes. For given h ∈ H we denote by Uh the finite element approximation
of U . Assuming for simplicity that vd and τd can be represented by the finite element
spaces without error, the discrete system reads: Find uh = (vh, ph, τh) ∈ (vd, 0, τd) + Uh

such that for all δuh = (δvh, δph, δτh) ∈ Uh
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〈ρvh · ∇vh, δvh〉+ sh(vh, δvh) + 〈τh, D(vh)〉 − 〈ph, div δvh〉 = 0 (8)

〈div vh, δph〉 = 0 (9)

λth(vh, τh, δτh) + 〈τh − λ
(
∇vhτh + τh∇vT

h

)
+ α̃τ 2

h , δτh〉 = 2〈µD(vh), δτh〉, (10)

where sh is a bilinear form needed to recover the Korn inequality for nonconforming
spaces,

sh(vh, δvh) := −
∑
S∈Sh

γ

|S|

∫
S

[π1
Svh·n][π1

Sδvh·n] ds+
∑

K∈Kh

β(D(vh)−π0
KD(vh))(D(δvh)−π0

KD(δvh)) dx,

(11)
defined on the edges Sh and cells Kh of the mesh h, involving the local L2(A)-projections
πk

A on polynomials of order k, A = S or A = K, and th is the Lesaint-Raviart upwind
form defined by

th(vh, τh, δτh) :=
∑
S∈Sh

∫
S

[τh]((vh · nS)+δτ ex
h + (vh · nS)−δτ in

h ) ds. (12)

Here τ
in/ex
h denote the inward/outward value of the discontinuous function τh on a given

edge S, depending on the chosen normal nS, and [τh] = τ in
h − τ ex

h for an internal edge,
whereas [τh] = τ in

h − τd for a boundary edge.
The short form of (8-10) reads: Find uh ∈ ud + U such that for all δu ∈ Uh

ah(uh)(δuh) = 0. (13)

3 COMPUTATION OF THE DRAG COEFFICIENT

Let as assume that we wish to compute the drag coefficient on an immersed object
with boundary Γ ⊂ ∂Ω. It is defined (up to a multiplicative constant) as the mean forces
projected in a given direction q ∈ R2:

J(u) :=

∫
Γ

nT σq ds. (14)

It is well known that the direct computation of the drag coefficient, J(uh) only yields
first-order convergence. A better approach [6] is based on the fact that (14) is related to
the natural boundary conditions. Indeed, integration by parts shows that for arbitrary w

〈ρv · ∇v, w〉+ 〈σ, D(w)〉 = 〈ρv · ∇v − div σ︸ ︷︷ ︸
=0

, w〉+ J(u).

Therefore, it is proposed to compute instead

Jwh
h := 〈ρvh · ∇vh, wh〉+ sh(vh, wh) + 〈σh, D(wh)〉, (15)
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where wh is a discrete function satisfying wh|Γ = q and wh|∂Ω\Γ = 0.
First, we notice that Jwh

h does not depend on the choice of wh satisfying the indicated
boundary conditions. Indeed, let w1

h and w2
h two such vectors. Then δwh := w1

h−w2
h ∈ Uh

can be used as a test function in (8) leading to J
w1

h
h = J

w2
h

h , and we may suppress the
superscript in the following.

The improved accuracy is explained as follows. First we note that with zh := (wh, 0, 0)
we have

J = ah(u)(zh) and Jh = ah(uh)(zh),

such that with ãh(u1, u2)(δu, z) :=
∫ 1

0
a′h(su1 + (1− s)u2)(δu, z) ds

J − Jh = ãh(u, uh)(u− uh, zh)

We are now lead to the introduction of the adjoint problem: Find z ∈ (q, 0, 0) + U such
that for all δu ∈ U

a′(u)(δu, z) = 0. (16)

Since a′(u)(δu, z) = a′h(u)(δu, z) it follows that

J − Jh = a′h(u)(u− uh, zh − z) + HOT.

Since zh can be chosen arbitrary (but respecting the boundary conditions), we can take it
as a (nonconforming) finite element interpolation of z, and this explains the second-order
behavior of the method.

4 A POSTERIORI ERROR ESTIMATION

The adjoint problem (16) plays a crucial role in our a posteriori error estimator, since it
allows us to relate the classical local residual terms to the drag functional. It is therefore
interesting to have a closer look at its structure. With z = (w, r, ξ) the linear system (16)
reads in operator form:

ρ
(
−v · ∇w +∇vT w

)
+ 2µ div ξ + L(τ)ξ −∇r = 0, (17)

−div w = 0, (18)

ξ + λ
(
−v · ∇ξ −∇v ξ − ξ∇vT

)
+ α̃τξ = D(w), (19)

where L(τ)ξ := div (ξτT + τT ξ) +∇τ : ξ.
The boundary conditions for (17-19) are implied by its weak formulation (16). It can be

seen that the transport operators have opposite sign, as compared to the direct problem.
In addition, several terms arise from the different nonlinearities of (1-3).

In our algorithm, we propose to discretize the adjoint system (17-19) on the same mesh
h as (8-10). Formally, we define zh ∈ (q, 0, 0) + U to be the solution of

a′(uh)(δuh, zh) = 0 ∀δuh ∈ Uh. (20)
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We next define quantities ηh = ηh(uh) and ζh = ζh(uh, zh) such that

|J − Jh| ≤ C ηh(uh) ζh(uh, zh) + HOT.

Following classical a posteriori error estimators for the nonconforming discretization of
the Stokes equation, see for example [4], we define

η2
h :=

∑
S∈Sh

|S|−1‖[vh]‖2
S +

∑
K∈Kh

|K| ‖vh · ∇vh‖2
K (21)

+
∑
S∈Sh

‖|vh · n|1/2[τh]‖2
S +

∑
K∈Kh

|K|1/2‖τh − λ
(
∇vhτh + τh∇vT

h

)
+ α̃τ 2

h − 2µ D(vh)‖2
K

and

ζ2
h :=

∑
S∈Sh

|S|−1‖[wh]‖2
S +

∑
K∈Kh

|K| ‖vh · ∇wh‖2
K (22)

+
∑
S∈Sh

‖|vh · n|1/2[ξh]‖2
S +

∑
K∈Kh

|K|1/2‖ξh − λ
(
∇vhξh + ξh∇vT

h

)
+ 2α̃τhξ

2
h −D(wh‖2

K

5 ADAPTIVE ALGORITHM

We suppose to have a local mesh refinement algorithm REF(h,M) which, for given
h ∈ H and M ⊂ Kh, produces a new mesh h′ ∈ H such that at least all cells in M
are refined. In general, additional cells K 6∈ M will be refined in order to meat certain
mesh smoothness criteria. For the complexity analysis, it is crucial that the number of
additionally refined cells can be controlled by the set of marked cells. This is general not
possible to be done in one step, but for some algorithms it can be controlled with respect
to the number of the marked cells in previous steps, see [3] for details in the case of the
new vertex bisection algorithm.

The adaptive algorithm is given next.

Goal-oriented AFEM

1. (Initialization) Choose an initial mesh h0, and set n = 0.

2. (Solve) Solve the discrete problems on mesh hn with solution uhn and zhn .

3. (Estimate) Compute the terms of the error estimators (ηh(K))K and (ζh(K))K .

4. (Mark) Define a set Mn ⊂ Khn of marked cells.

5. (Refine)hn+1 := REF(hn,Mn), set n := n + 1 and go to step(Solve).
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The crucial step is (Mark). Let us denote h := hn. We follow [1] and define a weighted
estimator as follows: Let ξh be defined as the following weighted estimator

ξ2
h(K) :=

ζ2
h

η2
h + ζ2

h

η2
h(K) +

η2
h

η2
h + ζ2

h

ζ2
h(K) (23)

Then define Mn to be a solution to the discrete optimization problem

inf
M∈Mn

#M, Mn :=

{
M⊂ Kh :

∑
K∈M

ξ2
hn

(K) ≥ θ ξ2
h

}
. (24)

(24) is the classical bulk criterion known from adaptive finite element algorithms for
control of the energy in elliptic equations. The weighting implies that more importance
will be given to one of the residuals if they are not balanced.

6 CONCLUSIONS

We have presented a way to goal-oriented adaptivity for viscoelastic flows. At hand of
the computation of the drag coefficient of a body in a polymer liquid, we have exhibited an
adjoint equation, which relates the classical local residual terms to the error in functional.
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