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Abstract

In this paper, we propose a new adaptive uncertainty propagation approach for systems of conservation laws, coupling Monte-
Carlo and generalized Polynomial Chaos methods. Nonlinear systems of conservation laws are known for developing discontinuous
solutions in finite time even for smooth initial conditions. In the context of uncertainty propagation via Polynomial Chaos, this
aspect leads to important numerical difficulties, related to the apparition of the Gibbs phenomenon in the vicinity of discontinuities,
such as treatment of the nonlinearities with loss of robustness and stability of intrusive stochastic solvers. These difficulties are not
encountered when using a Monte-Carlo method for uncertainty quantification at the expense of computational cost. Our idea is
then to couple the Monte-Carlo approach in the vicinity of discontinuities (as its convergence rate is independent of the smoothness
of the integrand) to generalized Polynomial Chaos in the other regions (as it may provide exponential convergence rate for smooth
functions). This leads to coupling different systems of conservation laws on different physical subdomains.
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1. Introduction

In this study, we develop adaptive stochastic spectral
methods for nonlinear hyperbolic systems of conservation
laws subject to parametric uncertainties. In this paper,
we deal with uncertainty in the initial conditions of the
system but the proposed methodology remains applica-
ble to different type of uncertainties (e.g. uncertainty in
the model coefficients). Uncertainty Quantification (UQ)
is particularly problematic in this context because strong
nonlinearities and discontinuities (e.g. shocks) associated
to the compressible flow features are conveyed into the
uncertain probabilistic space [27, 21, 34]. In this case,
accurate approximations of the solution via classical Poly-
nomial Chaos(PC)-based spectral methods fail, leading to
the unwanted presence of Gibbs oscillations. The problem
is particularly severe when the approximation space is con-
structed with polynomials based onto random variables
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encompassing the entire span of the underlying proba-
bility space associated with the random parameters of
the system. Once the approximation space is chosen, this
drawback remains no matter how the problem is solved:
i.e. in an intrusive (Galerkin method) or non-intrusive
(projection method) fashion. One way to control the os-
cillations with an intrusive scheme is to apply the PC
decomposition technique to an entropic variable instead of
the original prime variables of the flow [27]. This method-
ology is named Intrusive Polynomial Moment Method
(IPMM). In this case, the weak form of the system in the
stochastic approximation space of finite dimension, can
be proved to remain hyperbolic: hyperbolicity ensures the
existence of the solution and, above all, their stability in
time and consequently directly impacts the stability of
the numerical solution. The advantage of this approach
is that it bounds the oscillations of the solution close to
the shocks to a certain range through the entropy of the
system without the use of any adaptive random space dis-
cretization. While very convenient, the IPMM relies on the
choice of an appropriate entropic variable and also leads
to a minimization step which is time consuming due to the

Preprint submitted to Elsevier 21 April 2010



associated numerical cost.
Another way to tackle the problem, with a non-intrusive
approach this time, is to locally increase the level of stochas-
tic resolution necessary to bound the error [29]. This can be
done, for instance, by defining a partition on the probabil-
ity space which is decomposed into multi-elements within
each the solution is approximated, leading to an approx-
imation space of piecewise polynomials. For a stochastic
projection method, the right balance is achieved when the
aliasing error (e.g. coming from the interpolation related
to the numerical quadrature) and the finite-term projec-
tion error (due to the truncation of the PC representation)
are controlled to remain of comparable magnitude as the
numerical error associated with the “blackbox” determin-
istic solver [9, 10]. Similarly to the Monte-Carlo (MC)
simulation method, the advantage of this approach resides
in its flexibility: there is no need to modify the determin-
istic solver prior to the computations and the population
of solution samples may be enriched independently.
It seems therefore natural to try to combine both ap-
proaches. In [17], Ghanem already proposed an hybrid
stochastic finite elements approach where he combines the
versatility of MC simulation with the global convergence
properties of spectral expansions for problems featuring
random media. Constantine et al. [12] present a numerical
method to study convective heat transfer of an incompress-
ible flow around a cylinder subject to uncertain boundary
conditions. They exploit the one-way coupling of the en-
ergy and momentum transport to derive a semi-intrusive
uncertainty propagation scheme, which combines Galerkin
and collocation approaches for computing statistics of the
stochastic temperature field. In their case, the intrusive
approach (Galerkin projection) is applied to the energy
equation and the non-intrusive approach (stochastic col-
location) to the nonlinear momentum equation, in two
successive steps.
What we propose is different as we wish to be able to get
the benefit from both approaches at the same time. Ideally,
we would like to make use of the IPMM in some regions
where the response of the flow to the parametric uncer-
tainty is sufficiently smooth and resort to a non-intrusive
approach to tackle regions where the flow is (possibly non-
linearily) very sensitive to the uncertainty. As the flow
evolves both in space and time, we first need to adaptively
track these regions. Then, we need to numerically insure
proper interfaces between the different regions correspond-
ing to the different UQ schemes.
In the following, we will first present the numerical
method,...

2. Numerical method

In the following, we go over the adaptive hybrid numer-
ical method that we propose. Our methodology is inspired
by the recent work of Poëtte et al. [27, 25, 28, 26] who came
up with a new intrusive uncertainty propagation scheme

for stochastic systems of conservation laws inspired by Ki-
netic Theory [23, 11]. Here, the hybrid method couples both
intrusive and non-intrusive techniques and can be seen as
an extension of coupling methods proposed for Boltzman-
n/Euler equation in presence of rarefied gas [30, 31, 14, 13].
We will first explain this analogy and present the domain
decomposition heuristics that adaptively sorts through the
different regions of the flow. Based on this decomposition,
we will present the different possible hybrid scheme combi-
nations (but we will only focus on two 1 . We will show how
we deal with numerical interfaces between adjacent regions.

2.1. Stochastic hyperbolic system and IPMM method

Without loss of generality, let us consider the following
stochastic hyperbolic system of conservation laws in one
spatial dimension.

∂tu+ ∂xf(u) = 0, u(x, t, ω), x ∈ D, t ∈]0, T [, ω ∈ Ω. (1)

We define Ξ = {Ξj(ω)}Nj=1, N ∈ N, to be a RN -valued
random array on a probability space (Ω,A,P) with prob-
ability distribution PΞ(dξ), where dξ = dξ1 . . . dξN is the
Lebesgue measure on RN .
We can write: u(x, t, ω) ≈ u(x, t,Ξ1,Ξ2, . . . ,ΞN ) =
h(x, t,Ξ), where h : ξ 7→ h(ξ) is a measurable mapping
from RN 7→ R. We will only consider second-order random
fields, i.e. such that

E{‖u‖2} = E{‖h(Ξ)‖2} =
∫

RN

‖h(Ξ)‖2PΞ(dξ) < +∞,
(2)

with E denotes the expectation. The random array Ξ ∈
Rd represents the uncertainty (initial conditions, boundary
conditions,...) in the system.
The projection of this system via the following multiplier
Φ(Ξ) = (φ0(Ξ), ..., φP (Ξ))t and integration with respect
to the dPΞ measure provides a new truncated system:

∂t

∫
uΦ dPΞ + ∂x

∫
f(u)Φ dPΞ = 0, (3)

where the Φ components form an orthonormal Polynomial
Chaos basis with respect to dPΞ [35, 18]. The system is
then closed by use of a strictly convex entropy θ that in-
sures the hyperbolicity nature of the truncated system.
The Intrusive Polynomial Moments Method (IPMM) con-
sists in introducing uP , which is implicitly imposed when
the entropy

Θ =
∫
θ dPΞ,

reaches its minimum while satisfying the following con-
straints (u0, ..., uP )t, solutions of (3). In the following, we
will note:

U =
∫
uPΦ dPΞ et F (U) =

∫
f(uP )Φ dPΞ.

1 IPMM/MC and SPM/MC, cf. section 3.
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2.2. Analogy with coupling Kinetic Theory and Moments
Theory

In [30, 31, 14, 13], the authors are interested in numer-
ical simulations of fluid flows with different regimes, char-
acterized by their Knudsen number Kn. For large Kn, the
regime is said rarefied (very low gas densities) and con-
tinuous hydrodynamic models (Euler, Navier-Stokes) can
not describe satisfactorily the dynamics of the flow. In this
case, it is wise to resort to kinetic equations [30] that are
solved thanks to MC simulations DSMC for Direct Simu-
lation Monte-Carlo, see [13] and the references therein.

Similar difficulties may be encountered with UQ based
on Polynomial Chaos, especially in the context of discon-
tinuous solutions: the resolution of truncated 2 systems can
foster several difficulties [27, 25] which are not encoun-
tered when solving the stochastic partial differential equa-
tion with a non-intrusive method. Our idea is to adapt the
multi-regime resolution methods used in kinetic theory to
uncertainty propagation through Polynomial Chaos.

We suggest to couple the non–truncated systems (non-
-intrusive) with the truncated systems obtained through
Galerkin Polynomial Chaos (IPMM).

2.3. Convergence criteria heuristics and adaptive domain
decomposition

In most recent studies, researchers have recourse to
adaptivity in order to alleviate the computational burden
caused by the “curse of dimensionality” [6, 8, 15, 5, 16]
or the long-term stability issues arising in time integra-
tion of systems with random frequencies [33]. Few others
need some adaptivity in their approximation to tackle the
problem of stochastic discontinuities/bifurcations often
tied to some strong inherent deterministic nonlinearities
[32, 4, 20].
Most of convergence criteria utilized for adaptive ap-
proaches are based on some L2(Ω)–norm of the error of
the representation: for instance, in [6] the authors assess
the “lack-of-fit” of the representation by means of the
calculation of a linear correlation coefficient between the
observations (evaluated for a non–intrusive resolution) and
the polynomial surrogate model. In [24], they estimate the
L2(Ω)–norm error of their representation (non–intrusive
resolution) in order to identify the best random direction
to refine (anisotropic Smolyak numerical quadrature). The
convergence may be based on the statistics of the solution
as well. In [34], the contribution of additional expansion
terms to the variance within each local element of the par-
tition of the parametric space is quickly evaluated thanks
to the hierarchical nature of the gPC expansion.

2 Note that in this paper, we do an important distinction between

truncated/non–truncated systems and intrusive/non intrusive meth-

ods: the first refers to the systems we want to couple in this paper.
The second refers to the resolution methods used in order to numer-

ically accomplish the coupling.

For our coupled algorithms, we propose to use a simple
criteria εP (x), varying in space and for fixed time, based
on the absolute value of the remainder of the stochastic
polynomial chaos expansion:

εP (x) =

∣∣∣∣∣
∞∑

k=P+1

uk(x, t)Φk

∣∣∣∣∣ . (4)

In practice, the remainder is computed to check the con-
vergence of the expansion coefficients: we consider that
the solution has converged if |uP+1| < εP . Otherwise, the
polynomial order and/or the number of points is/are in-
cremented if the expansion does not satisfy the criteria.

Let us introduce the function h such that 3 h(x) = 0, for x ∈ D\DN ,

h(x) = 1, for x ∈ DN .
(5)

The function h is defined equal to one in a “validity” domain
of the truncated system, based on a notion of “equilibrium
of the distribution uP and zero elsewhere. The results are
generalizable to the case of a smooth function (see [14]).
Definition 2.1 (Equilibrium of uP ) The distribution
uP is said at equilibrium if the parameter εP (x) is close to
zero for x ∈ D fixed. It is implicitly defined by verifying the
following conditions

lim
P−→∞

εP (x) = 0,∀x ∈ D,

For fixed P <∞,∃x ∈ D such that εP (x) = 0,

lim
εP−→0

uε
P −→ uPeq,

where uε
P

denotes the solution of the non–truncated system
(1) and uPeq denotes the solution of the truncated system (3).

This definition echoes the notion of thermodynamical equi-
librium in kinetic theory.
Several choices are possible for the explicit definition of
εP (x). This question will be tackled later in this paper.
Remark 2.3.1 In kinetic theory, Kn allows the charac-
terization of the thermodynamical equilibrium: the more it
tends to zero, the more the density of presence of the par-
ticles fε tends to thermodynamical equilibrium. In other
words, in the limit Kn −→ 0, the moment equations (ver-
ified implicitly by fε) are valid. In the context of coupling
intrusive and non-intrusive methods, εP plays the role of
Kn for our UQ method.

Function h can also be defined via εP (x): at fixed P < ∞
as, h(x) = 0, if εP (x) −→ 0,

h(x) = 1, elsewhere.
(6)

3
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We then consider that our vectors of uknowns explicitly
depends on εP : uε

P

and Uε
P

. When εP −→ 0, uε
P

tends
to equilibrium uPeq = ∇λθ∗(ΠP v) solution of (3).

The function h decomposes D in several subdomains: we
denotes by DN = {x ∈ D : εP (x) −→ 0} and by D \ DN
its complementary. In the following sections, we go over
the systems solved on each sides of the interfaces defined
through h. We explain in which sense these coupled systems
are consistent with the resolution of the system (1). Let us
consider three possible configurations between two regions
(non–truncated/non–truncated, truncated/truncated and
non–truncated/truncated) and let us specify the boundary
conditions between these regions.

2.4. Coupling algorithms

In the following, we refer to the Spectral Projection
Method (SPM) as the non-intrusive method that approxi-
mate the stochastic solution by projecting it directly onto
each member of the chosen approximation space. This
Galerkin projection involves multi-dimensional integrals
that can be evaluated through numerical quadratures.

2.4.1. The different Hybrid system schemes
The non–truncated system is the system we want to solve

in the whole computational domain x ∈ D, with time t ∈
]0, T [. A direct calculation by MC simulations is not possi-
ble due to its slow convergence rate and to the cost of one de-
terministic computation of the non–truncated system. We
suggest a new coupling method between the non–truncated
system (MC, SPM, collocation) and the truncated system
from IPMM.

The coupling method we suggest is an adaptive PC based
method inspired of [14]. It consists in the resolution of the
non–truncated system in certain regions of the simulation
domain x ∈ DN ⊂ D and of the non–truncated system in
the complementary region D\DN . We emphasize that this
work focuses on the adaptive decomposition of the phys-
ical computational domain D rather than the stochastic
domain Ω [1, 21, 22, 34, 2]. The decomposition of D in
subdomains is directly linked to the choice of the heuristic.
In the following sections, we describe the models we solve
in the different subdomains and suggest a simple criteria
enabling the decomposition of D. The following section is
inspired of [14, 13].

2.4.2. Hybrid non–truncated-non–truncated system scheme
We define the left distribution uε

P

G = huε
P

and right
distribution uε

P

D = (1 − h)uε
P

and we verify they satisfy
the systems

∂tu
εP

G + h∂xf(uε
P

G + uε
P

D ) = 0, (7)

∂tu
εP

D + (1− h)∂xf(uε
P

D + uε
P

G ) = 0. (8)

The initial conditions of (7)-(8) are given by u0
G = hu0 and

u0
D = (1 − h)u0, if u0 denotes the initial condition of (1).

This leads to the following properties (inspired by [14]):

Property 2.4.1 If (uε
P

G , uε
P

D ) is the solution of problem
(7)-(8) with initial conditions (u0

G, u
0
D), then uε

P

= uε
P

G +
uε

P

D is solution of (1) with initial condition u0. The recip-
rocal property is also true.
Proof The results are immediate. �

Remark 2.4.1 Note that the last property implies that,
through the suggested UQ coupling method, we will be able
to couple non-intrusive methods with different levels of res-
olutions and /or different kinds of quadrature rules in the
different subdomains.

2.4.3. Hybrid non–truncated-truncated system scheme
We suppose the right region is at equilibrium (i.e. the

truncated equations are ”valid”): we look for the approxi-
mation of (8) when εP −→ 0. On the left hand side of the
interface, the non–truncated system (7) (only) is valid.
Property 2.4.2 When εP −→ 0, uε

P

D tends to the solu-
tion uPeq = ∇vs∗(ΠP ) whose moments verify the truncated
system

∂tU
εP

D + (1− h)∂x

[∫
f(uPeq + uεG)ΦdP

]
= 0. (9)

Proof By taking the moments of (8), we obtain:

∂tU
εP

D + (1− h)∂x

[∫
f(uε

P

D + uεG)ΦdP
]

= 0. (10)

As εP −→ 0 in this latter expression, we obtain the results.
�
This last property helps to define the boundary conditions
between the two subdomains: the coupled model system
non–truncated/truncated can be written

∂tu
εP

G + h∂xf(uε
P

G + uPeq) = 0, (11)

∂tU
εP

D + (1− h)∂x

[∫
f(uPeq + uεG)ΦdP

]
= 0. (12)

The initial conditions are given by u0
G = hu0 and U0

D =
(1 − h)U0. Then, the solution to problem (1) is given by
uε

P

= uε
P

G + uPeq such that uε
P

G is the solution on the left
uPeq is the solution on the right.

2.4.4. Hybrid truncated-truncated system scheme
As in the precedent subsections, we show that when both

domains on each sides of the interface are at “equilibrium”,
the coupling method enables to find back the truncated
system (3).
Property 2.4.3 When εP −→ 0, the moments of
(uε

P

G , uε
P

D ), solutions of (7)-(8), denoted by (Uε
P

G , Uε
P

D ) =

4



(hUε
P

, (1 − h)Uε
P

), converge to the solutions (UG, UD) of
the truncated systems

∂tUG + h∂xF (UG + UD) = 0, (13)

∂tUD + (1− h)∂xF (UD + UG) = 0. (14)

with the initial conditions U0
G = hU0, U0

D = (1 − h)U0.
Besides, U = UG + UD is solution of (3).
Proof The proof is similar to the proofs of properties 2.4.1
and 2.4.2: it is enough taking the moments of (7) and (8)
and considering that εP tends to 0 in the obtained systems.
The sum of the obtained systems shows that U = UG+UD
is solution of (3). �
Remark 2.4.2 Note that the last property implies that,
through the suggested UQ coupling method, we will be able to
couple intrusive methods with different levels of resolutions
and different entropies in the different subdomains: Low
polynomial order on the left and higher polynomial order on
the right for example or the use of different entropies on each
sides: indeed, we have seen [27] that taking θ(u) 6= u2

2 as
a closure entropy implies a supplementary cost (minimiza-
tion algorithm) but is relevant and accurate in the vicinity
of discontinuities. This point will be tackled in further pub-
lications.

2.5. Coupling systems =⇒ Coupling stochastic resolution
methods

In this section, we describe the coupling algorithm more
practically. The resolution of the coupling between the non–
truncated and truncated systems leads to the coupling of
the resolution methods of these systems: we present the
new uncertainty propagation method coupling intrusive
and non-intrusive methods on one time step. We illustrate
it in the case of a coupling between non–truncated (left)
and truncated (right) systems, the other possible combi-
nations results from the same kind of manipulations. The
talk is illustrated by table 1.

At the begin of the time step, the heuristic is tested and
new areas DN and D \ DN are defined.

Suppose DN is on the left hand side of the interface de-
fined by h (through εP ). On the left hand side of the inter-
face, we want to solve the non–truncated system (11): we
turn to a non-intrusive method 4 . Let’s choose N points,
(ξi)i∈{1,...,N} with associated weights (wi)i∈{1,...,N}. In this
subdomain, εP 9 0 so that h(x) = 1 for x ∈ DN . Equation
(11) simplifies to

∂tu
εP

G + ∂xf(uε
p

G ) = 0. (15)

the resolution of (15) implies the resolution ofN decoupled
systems

4 We recall that the coupling we describe here leave the choice of

the non-intrusive and intrusive method in the different regions.

∂tu
εP

G (x, t, ξ1) + ∂xf(uε
p

G (x, t, ξ1)) = 0,

...

∂tu
εP

G (x, t, ξi) + ∂xf(uε
p

G (x, t, ξi)) = 0,

...

∂tu
εP

G (x, t, ξN ) + ∂xf(uε
p

G (x, t, ξN )) = 0.

(16)

InD\DN , we want to solve the moment system (12) (trun-
cated). In this domain, the solution is at “equilibrium”:
εP −→ 0 =⇒ h(x) = 0, ∀x ∈ D\DN so that (11) simplifies
to

∂tUD + ∂x

[∫
f(uPeq)ΦdP

]
= 0. (17)

The system (17) is solved thanks to an intrusive method.
Once again, the choice of the intrusive resolution method in
D\DN is free: it is enough choosing the basis of multiplica-
tors (φ0, ..., φP )t (polynomials [27], piecewise polynomials
[34], wavelets [21],...) with a closure entropy θ(u) defining
the form of the equilibrium distribution uPeq = ∇λθ∗(ΠPλ).

Now remains to define the boundary conditions in each
regions DN and D \ DN : the results are presented in table
1.
– In domain x ∈ DN , the moments of uε

P

G at the boundaries
ofDN are evaluated from the solution taken at the points
(ξi)i∈{1,...,N}:

UBoundaries(x, t) ≈
N∑
i=1

wiu
εP

G (x, t, ξi)Φ(ξi)

∀x ∈ ∂DN and at fixed t.

(18)

In practice, we use a ghost cell inDN for the computation
of the fluxes from DN to its neighboor area.

– For x ∈ D \DN , the moments implicitly define the equi-
librium distribution uPeq(x, t, ξ). This distribution enables
to compute the punctual values at the boundaries of x ∈
D \ DN :

∀i ∈ {1, ..., N}, uBoundaries(x, t, ξi) ≈ uPeq(x, t, ξi)
∀x ∈ ∂(D \ DN ) and at fixed t.

(19)

Once again, in practice, we resort to ghost cells enabling
the computation of the fluxes form D \ DN to its neigh-
boor area.

Remark 2.5.1 Note that the well-posedness of the coupled
systems (even if they are both well posed (hyperbolic here)
has not been proved and constitutes an open problem [3, 7]. A
more theorical study of the method will be tackled in further
publications.

3. Numerical results

In this section, we apply the new coupling uncertainty
propagation method to two different equations. First Burg-

5



ers’ equation: it is a scalar equation which present the ad-
vantage of having analytical solution and consequently to
compare the accuracy of the different methods applied. We
then consider the case of Euler system in 1-D cartesian co-
ordinates.

The coupling approach allows many combinations
amongst the coupling of systems 5 as well as methods 6 .
We can not present all the results obtained for all possible
combinations in this paper. They are under study and will
be the purpose, for the most efficient, to further publica-
tions. In this paper, we suggest to focus on two different
simple combinations in order to give a hint of the efficiency
and capacity of the approach.

In every numerical results presented in this section, the
selected heuristic consists in a test on the last coefficient
of the polynomial chaos development of the vector of un-
knowns uPlow

: h(x, t) = 0, if uPlow
(x, t) < εthreshold,

h(x, t) = 1, elsewhere.
(20)

In practice, we choose the threshold εthreshold = 10−8 in
the next simulations

3.1. Stochastic inviscid Burgers equation

The methodology previously described is applied to the
simple case of a stochastic scalar conservation law: the in-
viscid Burgers equation with uncertain initial condition.
We consider a stochastic initial condition described by two
iid uniform random variables to represent exactly the ran-
dom initial condition.

We suggest to reconsider the test-case IC3 presented in
[27] for Burgers equation:

∂tu+ ∂x
u2

2
= 0, x ∈ D = [0, 1], t ∈ [0, 0.55]. (21)

We refer to [27] for more details on the physical relevance,
the mathematical and analytical solutions and the expres-
sion of the truncated system. The problem involves two
shocks whose uncertain magnitudes reflect in the stochas-
tic domain. Initially, the shocks are far from each others
(see figure 3 top left or 1 left). As time passes, the second
shock goes faster than the first one and reaches it, interacts
with it, see figure 1 right. This can lead to very complex

5 Three different: non–truncated/truncated, truncated/truncated
and non–truncated/ non–truncated.
6 Only in the case non–truncated/ truncated, the number of possi-

bilities is very important. For example, we can choose

(i) MC / IPMM with entropy θ(u) = u2

2
,

(ii) MC / IPMM with entropy θ(u) = s(u) where s is a mathe-

matical entropy for the considered non–truncated system, see
[27].

(iii) SPM / IPMM ...

patterns in the stochastic domain, at some specified loca-
tions, as time passes, see figure 2 (left) where the shocks
are interfering with each others at this time and location.

uIC4(x, ξ0, ξ1)

x1x0 x

K0 = K0 + σ0ξ0

K1 = K1 + σ1ξ1

K2

 0

 2

 4

 6

 8

 10

 12

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
x

time evolution of u for one realization of ξ

Fig. 1. Initializations for test-case IC3 (left) and time evolution of
the solution for one realization of the random variables: the second

shock reaches the first one whatever the realization of the random
variables and absorbs is (right).

Note that the solution at this time and location ob-
tained from the classical intrusive approach (or IPMM
with θ(u) = u2

2 ) presents some oscillations in the stochas-
tic space due to Gibbs phenomenon, see figure 2 (right).

Let’s now apply our coupling approach: for the consid-
ered test-case, the non–truncated system, for x ∈ D\DN , is
solved with a Monte-Carlo method with N = 20000 points
and using Phigh = 8. The truncated system is solved, for
x ∈ DN by applying sG-gPC (or IPMM with θ(u) = u2

2 ,
see [27, 25]) with Plow = 2. The numerical scheme used
for the discretization of the truncated system is the Roe
scheme presented in [27]. The numerical scheme used for
the discretization of the non trucated system is a classical
Roe scheme.
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Fig. 2. Response surface results at time t = 0.0545 and posi-

tion x = 0.791. Analytical solution (left), sG-gPC (= IPMM with

θ(u) = u2

2
) (right). The oscillations of the sG-gPC solution are due

to Gibbs phenomenon.

Figure 3 (top-left) shows the initial condition of the
mean with the initial condition for h: initially, only four
cells of the physical space are not a equilibrium. These
cells correspond to cells in the vicinities of the two initial
discontinuities. The top right and bottom left figures of
3 shows these same quantities at two different times. For
both figures, the non–truncated system’s resolution area
(Monte-Carlo) is in the vicinity of the moving discontinu-
ities. In the smooth areas, the truncated system is solved
(sG-gPC = IPMM with θ(u) = u2

2 ). The bottom right
picture shows function (ξ0, ξ1) 7−→ u(0.791, 0.054, ξ0, ξ1),
solution in the stochastic domain at fixed x and t. At these
position and time, the truncated system is solved: the figure
presents the solution in the stochastic space obtained with
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Fig. 3. Burgers test-case in two stochastic dimensions (cf. [27]) solved
by the coupling method. The top left picture presents the initial

conditions for the mean of u and for the function h. The top right and

bottom left pictures shows these latter distributions at two different
times. The non–truncated system, for x ∈ D \ DN is solved with

with a MC method with N = 20000 points and using Phigh = 8.

The truncated system is solved, for x ∈ DN by applying sG-gPC (or

IPMM with θ(u) = u2

2
, see [27, 25]) with Plow = 2. The physical

discretization has 1000 cells. The bottom right picture shows the

solution in the stochastic space at fixed x = 0.791, t = 0.054: at
these position and time, the non–truncated system is solved and the

solution at the points (20000 MC points) do not experience Gibbs

phenomena.

the N realisations (Monte-Carlo). The use of the Monte
Carlo method enables to avoid the appearance of Gibbs
phenomenon in the vicinity of the discontinuities and to
preserve a maximum principle (this is also the case in [13]).

The main advantage of coupling the MC and PC meth-
ods remains in its low cost compared to a classical Monte-
Carlo approach on the whole domain together with its ver-
satility and easiness toward the treatment of nonlinearities
(no Gibbs phenomenon). Of course, the accuracy of the so-
lution on the whole simulation domain, is dictated by the
less accurate method: in this case, the MC approach (which
converges slower than the PC approach). Table 2 shows the
costs of the non-intrusive, coupling non-intrusive/intrusive
and intrusive methods for the different considered prob-
lems. The methods are compared for equal characteristics
in the different domains 7 but the same accuracy is ob-
tain on the mean of u with the full MC approach and the
coupling approach.

For Burgers’ problem, the computational cost of the cou-
pling method is almost the same as the one for the intru-
sive method (ratio of 1.01 between the CPU times, cf. table
2). It is much less important than the CPU cost of the full
MC method. The CPU time of the coupling method is very
close to the CPU time of the intrusive method because the
non equilibrium area are very localized (few cells amongst
the cells of the whole domain). For Euler system, the con-

7 Number of points of the non-intrusive method and truncature

order of the intrusive one etc.

clusion are quite different due to the expansion of the non
linear domains, see next section.
Remark 3.1.1 The coupling method is not conservative:
the resolution errors for the different types of systems are
not compensating. However, we have experimentally noticed
that the more the physical and the stochastic spaces are re-
fined, the less the conservativity error.

3.2. Compressible gas dynamics

The methodology of section 2.4.1 is now applied to one-
dimensional compressible flows modeled by Euler system:
∂tρ+ ∂xρu = 0,

∂tρu+ ∂xρu
2 + p = 0,

∂tρu+ ∂xρue+ pu = 0,

(22)

where ρ is the mass density, u is the velocity, e is the total
energy and p is the pressure with perfect gas closure 8 p =
(γ − 1)ρε with internal energy ε = e− u2

2 .
First, a stochastic Riemann problem (Sod shock tube)

uncertain initial condition is presented in subsection 3.2.1.
Then a stochastic Richtmyer-Meshkov like problem with
uncertain initial condition is studied in subsection 3.2.2.
For more details about the test-cases, we refer to [27, 25].

In this section, we show the capacity of the method to
couple two non-intrusive methods on each sides of the in-
terface separating the equilibrium and non equilibrium do-
mains. For x ∈ DN , the non–truncated system is solved by
a MC method with N . For x ∈ D \ DN , we solve the non–
truncated system but with a SPM method with Nq and
Nq << N . The coupling between the subdomains is done
through polynomial reconstruction at the boundaries: the
truncation orders are Plow at the boundaries at equilibrium
and Phigh at the boundaries of non equilibrium domains.

We chose to apply this non-intrusive / non-intrusive cou-
pling to Euler system (rather than Burgers) because of the
difficulty to develop numerical schemes for the truncated
Euler system: in this case, the same numerical scheme is
used in both domain: this puts forward one more advantage
of the coupling approach.

3.2.1. Sod shock tube
This test-case is a stochastic Riemann problem with un-

certain initial interface position: at t = 0, two fluids at
rest are separated by an uncertain interface whose posi-
tion is modeled by a uniform random variable xinterface =
0.5 + 0.05Ξ where Ξ is uniform on [−1, 1], see figure 4 (left)
for the intial conditions on the mean and standard devia-
tion of the mass density ρ. The initial condition are

8 In practice, we took γ = 1.4 on the whole domain.
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ρ(x, 0,Ξ) =

 1 if x ≤ xinterface(Ξ)

0.125 otherwise
,

ρu(x, 0,Ξ) = 0,

ρe(x, 0,Ξ) =

 2.5 if x ≤ xinterface(Ξ)

0.25 otherwise.

For one realization of the uncertain interface, three waves
are propagating in the fluids: the left wave is a rarefaction
fan in the heavy fluid, the second wave is an interface (con-
tact discontinuity) and the right wave is a shock propagat-
ing in the light fluid. At time t = 0.14, the solution presents
three area of important variability (non zero standard de-
viation) corresponding the area of the propagating waves
(rarefaction, interface, shock, see figure 4 (right)).

3.2.2. Richtmyer-Meshkov (RM) like shock tube
For this test case, two fluids are separated by an stable

interface. The light fluid (right of the interface) is shocked:
as time passes, a shock will propagate toward the uncertain
interface whose position is once again modeled by a uniform
random variable xinterface = 0.5+0.05Ξ where Ξ is uniform
on [−1, 1]. Figure 4 (bottom left) shows the initial mean
and standard deviation of the mass density with respect to
x.

The full initial conditions are given by:

ρ(x, 0,Ξ) =


4, if x ≤ xinterf (Ξ).

1, if xinterf (Ξ) ≤ x ≤ xshock.
2γ − γs+ s
2γ − γs− s , if x ≥ xshock.

u(x, 0,Ξ) =


0, if x ≤ xinterf (Ξ).

0, if xinterf (Ξ) ≤ x ≤ xshock.

−
√
s(ρ− 1)
ρ(1− s) , if x ≥ xshock.

p(x, 0,Ξ) =


1, if x ≤ xinterf (Ξ).

1, if xinterf (Ξ) ≤ x ≤ xshock.
1

1− s , if x ≥ xshock.

(23)

In this paper, we take s = 0.5 (strength of the shock wave
hitting the uncertain interface), γ = 1.4, and xshock = 0.7.
Figure 4 (bottom right) shows the solution at time Tfinal =
0.34.

This test-case is relevant because when the shock hits
the uncertain interface, the amplitude of the interface in-
creases leading to a crash of classical intrusive codes (nega-
tive mass density in the stochastic space). From this latter
interaction, three waves are propagating: one transmitted
shock (left), one interface and one reflected shock. Once
again, the uncertainty (non zero standard deviation) will
be shared between these three waves as time passes, see
figure 4 (bottom right).

3.2.3. Interpretations and remarks
In this section, we show the capacity of the method to

couple two non-intrusive methods on each sides of the in-
terface separating the equilibrium and non equilibrium do-
mains. For x ∈ DN , the non–truncated system is solved by
a MC method withN = 20000. For x ∈ D\DN , we solve the
non–truncated system but with a SPM method withNq = 9
(level 3 in Clenshaw-Curtis quadrature rule) so that we can
consider Nq << N . The coupling between the subdomains
is done through polynomial reconstruction at the bound-
aries: the truncation orders are Plow = 3 at the boundaries
at equilibrium and Phigh = 8 at the boundaries of non
equilibrium domains. The simulations have 1000 cells and
the numerical scheme is the Lagrange+Remap presented
in [26, 19], with order Nscheme = 3. Figure 4 shows means,

t = 0 t = Tfinal
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Fig. 4. Sod and 1–D Richtmyer-Meshkov–like stochastic test–cases:

resolution by coupling non–truncated/non–truncated systems. For
both test–cases, the uncertainty is carried by the initial condition: on

the initial interface position modeled by a uniform random variable

xinterface(Ξ) = 0.5 + 0.05Ξ. For x ∈ DN , the non–truncated system
is solved by a SPM method with 1-D Clenshaw-Curtis rule of level

3 (i.e. 9 points). For x ∈ D \ DN , we also solve the non–truncated

system but with a MC method with 500 points. The truncation
orders are Plow = 3 at equilibrium and Phigh = 8 elsewhere. The

simulations have 200 cells.

standard deviations (std) of the mass density with function
h at initial and final times for both considered test-cases
(Sod Tf = 0.14 (top) and Richtmyer-Meshkov Tf = 0.34
(bottom)). Initially, the non equilibrium areas are located
in the vicinities of the interfaces, in the physical areas where
the solutions present discontinuities in the stochastic space:
in these areas, h(x) = 0 for both test-cases.

The right column shows the results at final times. For
both simulations, the resolution areas of the non equilib-
rium system are spread to more than the half of the phys-
ical domain, contrary to the Burgers’ results for which it
remains very localized. Indeed, for the RM problem, the
whole right side of the domain is D \ DN . This is due to
less localized nonlinear phenomenons classical of computa-
tional gas dynamics.
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Remark 3.2.1 Note that this emphasizes one more diffi-
culty arising when dealing with nonlinear systems: the non-
linearity quickly propagates through the resolution domain
and the area of importance (in the sense where the compu-
tation are costful and need accuracy) grows fast.

Nevertheless, even in this case of spreading non equilib-
rium zones, the coupling approach remain competitive in
term of computational cost, see table 2.

Full MC (1) Coupling (2) full PC (3)
(1)
(2)

(2)
(3)

Burgers 16731.03 s. 1274.74 s. 1108.68 s. 13.13 1.14

Sod 465 s. 135 s. 3 s.∗ 6.37 13.2

R.-M. 1-D 30 mn 27 s. 11 mn 14 s. 55 s.∗ 3.44 45

Table 2

CPU times for the different stochastic problems (Burgers, Sod, 1-

D Richtmyer-Meshkov) for three uncertainty propagation methods:
non-intrusive, coupling intrusive/intrusive (or non-intrusive/non-

-intrusive for Euler) and intrusive. The methods are compared for
equal polynomial orders and/or number of points recalled in the

latter respective sections. The results presenting ∗ recall that the

sG-gPC method (IPMM with θ = u2

2
) could not have been used

(negative mass density and crash of the intrusive code): the SPM
method with 9 points 1-D Clenshaw-Curtis rules has been used in-

stead even if not really representative (as the same accuracy is not

reached with (3) for the three problems. The red color for (1), (2)
recalls that these CPU times have been obtained for simulations, full

MC and coupling method, having the same accuracy (the (3) being

less accurate but having the same parameter as in the equilibrium
domain).

Figure 5 shows the RM computation at two later times
and emphasizes the capability of the coupling approach to
follow the non equilibrium areas: the boundary conditions
are: wall type on the left and neutral on the right so that
the transmitted shock reflects on the wall and hit back the
interface resulting in one more transmitted (leaving the
interface and going to the right) and one more reflected
(leaving the interface and going toward the wall) shock.

In the Euler cases, the coupling method ensures a CPU
time gain in comparison with the non-intrusive method (ta-
ble 2). However, it remains more costful than the intrusive
method: this can be explained by the fact that for Burg-
ers’ equation, the non equilibrium areas are very localized,
which is not the case for Euler system. The coupling ap-
proach still present some advantages, even in the Euler
case: it is transparent to the negative mass density prob-
lems (Gibbs), negative pressure etc. emphasized in [27, 25]
and to nonlinearities.

Remark 3.2.2 According to these results, the coupling of
intrusive (θ(u) = u2

2 ) / intrusive (θ(u) = s(u)) 9 seems
encouraging: indeed, the IPMM approach with proper en-
tropy closure reveals to be more accurate than sG-gPC in
nonlinear areas (see [27]) but needs a additional step in the
resolution (minimization algorithm). The use of sG-gPC in
equilibrium areas and IPMM θ = s is non equilibrium ones

9 where s is the mathematical entropy.
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Fig. 5. Same simulation as described in susbsection 3.2.2, with the
same parameters as in figure 5 but for more advanced times. The left

picture shows the behavior of the heuristic with time: at t = 0.43, the

non equilibrium area is non connex anymore (two non equilibrium
areas, one in the vicinity of the transmitted shock and interface and

one other in the vicinity of the reflected shock. The transmitted shock

then hits the left wall and reflects to go back in the direction of the
interface: at t = 1.24 (right picture), the two non equilibrium areas

are in the vicinity of the interface and the reflections between the

wall and interface of the first transmitted shock and in the vicinity
of the second transmitted shock which went through the interface

and propagates toward the right boundary.

could consequently reduce the cost of IPMM θ = s. This will
be investigated in further publications.

Note that the CPU times for the fully intrusivelly solved
Euler system have been obtained by application of IPMM
with θ = s with s the mathematical entropy of the Euler
system (see [27]) as in the case θ = u2

2 (sG-gPC), the code
crashes due to numerical instabilities triggered by Gibbs
phenomena, [27, 25].

4. Summary

In this paper, we have presented a new adaptive uncer-
tainty propagation methods based on the resolution of dif-
ferent systems in different parts of the physical domain,
rather than the stochastic one. The approach is based on
an analogy with kinetic/moment theory and inspired by
methods developed for coupling Boltzmann equation with
the Euler system.

The coupling method suggested in this paper enables to
solve the truncated system in equilibrium areas, smooth
solution areas, and the non–truncated system elsewhere
(presence of discontinuities or steep/stiff gradient). The
method combines the advantages of both uncertainty prop-
agation methods: indeed, in smooth areas, the exponential
convergence is ensured. In the non smooth areas, the use of
a non-intrusive method stabilizes the solver and avoids the
appearance of the Gibbs phenomena. Moreover, its imple-
mentation is completely transparent to nonlinear effects.

In certain particular cases, the method enables an im-
portant gain in the CPU time (e.g. in the case of localized
non linear phenomenon). At the present time, the method
seems more costful than a purely intrusive approach but is
clearly cheaper than a purely non-intrusive method.
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The method implies the use of an arbitrary criteria char-
acterizing the different physical subdomains in which are
solved the different systems. The criteria used in this paper
has been chosen for its simplicity and is quite constraining:
a more in depth study of the effect of this criteria will be
tackled in further publications. Note that the method do
not need the tracking of discontinuities in the stochastic
space (as usual adaptive UQ methods do, see [34, 1, 21]):
the adaptation only rely on a decomposition of the physical
domain.

The method enables to choice of the stochastic resolu-
tion methods in the different parts of the domain: many
combinations are possible 10 and will be studied later on.
In this paper, we focused on one combination implying the
coupling of the truncated and the non–truncated system,
leading to two combinations for the resolution methods:
IPMM 11 (θ(u) = u2

2 ) with MC 12 for Burgers’ equation
and SPM 13 with MC 14 . Note that the coupling described
is also independent of the physical solvers, i.e. different nu-
merical schemes in the different resolution domains can be
used.

10SPM/IPMM , MC/IPMM, SPM/SPM, IPMM/IPMM, etc.
11 for the truncated system.
12 for the non–truncated system.
13 for the truncated system.
14 for the non–truncated system.
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for x ∈ DN ,εP 9 0 for x ∈ D\DN , εP −→ 0

non–truncated system P−truncated system

∂tuε
P

G + h∂xf(uε
P

G + uPeq) = 0 ∂tUε
P

D + (1− h)∂x

[∫
f(uPeq + uεG)ΦdP

]
= 0

Numerical resolution methods

non-intrusive (MC, SPM,...) Intrusive (sG-gPC, IPMM, SPM, ME-gPC,...)

Choice of N points (ξi)i∈{1,...,N} Choice of the basis (φ0, ..., φP )t,

of weights (wi)i∈{1,...,N} of the closure entropy θ(u)

{(εP 9 0) =⇒ h(x) = 1}
⇓

{(εP −→ 0) =⇒ h(x) = 0}
⇓


∂tuε

P

G (x, t, ξ0) + ∂xf(uε
P

G (x, t, ξ0)) = 0,

∂tuε
P

G (x, t, ξ1) + ∂xf(uε
P

G (x, t, ξ1)) = 0,

· · · ,

∂tUD + ∂x

∫
f(uPeq)

 φ0

. . .

φP

dP = 0

Boundary conditions between domains for fixed t

In ∂ (D \ DN ): moments on boundary In ∂DN : values on boundary

uε
P

G (x, t, ξi) known ∀i ∈ {1, ..., N}
⇓

uk(x, t) known ∀k ∈ {0, .., P}
⇓ uBordsk (x, t) ≈

N∑
i=1

wiu
εP

G (x, t, ξi)φk(ξi)

known ∀k ∈ {0, . . . , P}


{
uPeq(x, t, ξi) = ∇λθ∗(ΠPλ(x, t, ξi))

known ∀i ∈ {0, ..., N}

}

Table 1

Description of the coupling algorithm for the resolution of non–truncated/truncated subsystems. The coupling is effective through imposing

correct boundary conditions between the different regions.
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