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Abstract. This paper presents a study of numerical errors associated with the simula-
tions of turbulent flows. Four different computational methods have been employed in the
framework of implicit large eddy simulation and computations have been performed for a
jet flow configuration for which experimental data and direct numerical simulations are
available. We show that a numerical error bar can be defined that takes into account the
errors arising from the different numerical building blocks of the simulation method. In
this study, the effects of different grids, Riemann solvers and numerical reconstruction
schemes have been considered, however, the approach can be extended to take into account
the effects of the initial and boundary conditions as well as subgrid scale modelling, if
applicable.
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1 INTRODUCTION

Computational uncertainty is present in every system encompassing non-linearities and
appears in many different domains of mathematics, physics and engineering[1, 2, 4]. In
the context of computational fluid dynamics for turbulent flows, the uncertainty is asso-
ciated with the non-deterministic nature of turbulence, which poses numerical modelling
challenges with respect to the definition of initial and boundary conditions as well as
the design of numerical methods for solving the fluid flow equations. Different ways to
quantify numerical uncertainty in CFD have also been discussed in the past[3].

Modern numerical methods such as high-resolution and high-order schemes, consist
of several numerical components (building blocks) for achieving better convergence and

high-order order of accuracy in complex flows. For example, high-resolution schemes[26]

encompass several steps in the discretisation of the partial differential equations, which
include a Riemann solver and a numerical reconstruction scheme. The latter also contains
slope/flux limiters which are used for adjusting the order of accuracy in the computational
domain by taking into account the flow gradients on the local stencil. The conventional
wisdom is that as the grid is further refined the results will converge to the same solution
regardless the numerical schemes employed, however, in turbulent flow simulations such as
in Large Eddy Simulation (LES), there is no explicit verification that the solution is grid-
converged, because the computations are always under-resolved. One could argue that
this may also be the case with respect to Direct Numerical Simulations (DNS) at least
with reference to high-order statistics. Discussion on Policy Statement on the Control of
Numerical Accuracy can also be found in previous discussion documents[4, 5, 6], including
the notion of a numerical error bar[5].

This paper investigates some of the uncertainties associated with numerical methods
in the framework of LES of turbulent flows. Numerical errors in the context of LES have
also been discussed previously by other authors[9]. Specifically, a turbulent jet flow[38, 39]

has been chosen as the benchmark case for different Riemann solvers, high-resolution and
high-order methods and different levels of grid refinement, in order to comparatively
demonstrate the effects of the above numerical components on the accuracy of the simu-
lations. Comparisons are presented against experimental [39] and DNS data[38]. Jet flows
are pertinent to many engineering applications, including propulsion, noise radiation,
mixing effectiveness among others[8, 10, 11, 12, 41, 13, 14, 16, 17].

The results show that effects of the grid refinement can be comparable to the effects
of the Riemann solver and numerical reconstruction scheme. Moreover, it is suggested
that a numerical error bar approach could be adopted in turbulent flow simulations, which
takes into account an envelope of results obtained by different methods (and subgrid scale
models, if applicable).
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2 COMPUTATIONAL METHODS

The computational study is based on the implicit large eddy simulation approach,e.g,
see reviews[18, 19]. The computational fluid dynamics code CNS3D [19, 20, 21] has been
employed, which has been previously applied to a wide range of flows featuring shock waves
and turbulence[19, 22, 23, 24, 25, 28, 29, 30, 31] . The code solves the governing equations
using a finite volume Godunov-type methods[32, 33, 26]. The inter-cell numerical fluxes
are computed based on the solution to the Riemann problem using the reconstructed
variables at the left and right of the cell interface. The computational code includes a
library of different Riemann solvers[24]. In the present study the characteristics-based
scheme (CBS)[24, 42] and HLLC approximate Riemann solver of[33] have been employed.

Higher order of accuracy is achieved using MUSCL extrapolation [35], with the fifth-
order limiter proposed of[36]. The standard MUSCL extrapolation has been augmented
using a low-Mach limiting scheme[37], which involves an additional stage in the recon-
struction process for the velocity vector. It ensures uniform dissipation of kinetic energy
in the limit of zero Mach number (M), extending the validity of the Godunov method
to at least M ≈ 10−4, via a progressive central differencing of the velocity components.
The formulation of the underlying governing equations is not changed, and monotonic-
ity of the density and scalar field is maintained. Furthermore, numerical simulations
have been performed using the ninth order weighted essentially non-oscillatory (WENO)

method[27], which have been implemented into CNS3D and tested for a wide range of
problems[25, 28, 30]. The time integration has been obtained using a three-stage total
variation diminishing (TVD) Runge-Kutta method [26].

3 RESULTS

Simulations have been performed for an isothermal, round jet into a static free stream at
a Reynolds number of 10, 000 based on the jet’s outlet diameter and velocity (M = 0.9) at

standard sea level temperature and pressure[38]. The velocities along the jet axis become
non-dimensional with reference to the axial velocity of the jet at the geometrical center of
the inflow, Uref . Three computational meshes were employed comprising 5×105 (coarse),
106 (medium), and 2 × 106 (fine) cells, respectively. The boundary conditions were set
up as inflow for the jet discharge and upstream of the jet exit; no-slip at the wall of
the engine’s nozzle and outflow (non-reflective boundary conditions) for the rest of the
domain. Simulations were performed using the following numerical variants:

• The HLLC Riemann solver with the 5th-order MUSCL scheme and low-Mach lim-
iting, henceforth labelled as ‘CNS3D (HLLC)’ or ‘CNS3D (5th-order)’.

• The CBS Riemann solver in conjunction with the 5th-order MUSCL scheme and
low-Mach limiting, henceforth labelled as ‘CNS3D (CBS)’.

• The HLLC Riemann solver with the 9th-order WENO scheme, henceforth labelled
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as ‘CNS3D (9th-order)’.

Comparisons are presented with the DNS[38] and experimental[39] data. Figure 1
presents snapshots at different time instants of the axial velocity profile of the jet on the
fine mesh.

Figure 2 shows the evolution of the standard deviation, for the different grid reso-
lutions, converging to a statistically converged solution. Figure 3 shows the results for
the axial average velocity for all grid resolutions, using the HLLC Riemann solver and
5th-order MUSCL scheme, and comparisons with the DNS and experimental data. The
comparisons reveal that the medium and fine grids give similar results. Furthermore,
the numerical (maximum) error was calculated as the absolute difference between the
experimental results and the numerical prediction obtained from each method scaled by
the corresponding experimental value. Furthermore, the standard-error-of-the-mean was
calculated, which is defined by the standard deviation divided with the square root of the
number of samples [40]. Table 1 shows the reduction in the absolute error and standard-
error-of-the-mean with the grid refinement.

Computational grid Maximum error Standard-error-of-the-mean
Coarse 0.413 0.0160

Medium 0.273 0.0157
Fine 0.197 0.0102

Table 1: Numerical error reduction with grid refinement

Figure 4 shows the average velocity distribution for all simulation methods (on the
medium grid) demonstrating the effects of the Riemann solver and numerical reconstruc-
tion scheme on the velocity distribution. Table 2 also shows the maximum error and the
standard-error-of-the-mean.The following observations can be made:

• The CBS Riemann solver gives (slightly) better results than the HLLC.

• The 5th-order MUSCL gives slightly better results than the 9th-order WENO.

• The numerical uncertainty with respect to the errors associated with the numerical
reconstruction schemes is of the same order of magnitude with the uncertainty
associated with the grid size, medium vs fine grid (Table 1).

Assuming that the total error can be represented by the sum of the estimated maximum
error and the standard-error-of-the-mean, a numerical error bar can be defined with re-
spect to an averaged solution. For example, one possibility, including but not not limited
to, is to obtain an average of all numerical predictions and put on top of it the numerical
error bar, which represents a measure of the numerical uncertainty. Figure 5 shows the
above and Table 2 presents the numerical error and the standard-error- of-the-mean for
the averaged reconstructed solution (labelled as ‘All’) obtained from the various large
eddy simulations.
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Riemann solvers Maximum error Standard-error-of-the-mean
and numerical reconstruction schemes

CNS3D (HLLC), 5th-order 0.1887 0.0152
CNS3D (HLLC), 9th-order 0.2697 0.0153
CNS3D (CBS), 5th-order 0.1549 0.0152

All 0.115 0.0152

Table 2: Numerical error for various LES simulations. The result obtained by averaging all LES solutions
is labelled as ‘All’.

4 CONCLUDING REMARK

Although this paper does not aim to provide an exhaustive account of the possibilities
for defining the numerical error bar, it demonstrates that quantification of the numerical
uncertainty requires appropriate amalgamation of the effects of all numerical building
blocks that can potentially affect the numerical solution. By doing so, a numerical error
bar can be defined, which provides the envelope of an achievable solution.

Future work will concentrate on mathematical and numerical analysis of the error bar
in CFD, including the effects of initial and boundary conditions.
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(a) (b)

(c) (d)

Figure 1: Instantaneous axial velocity profiles of the jet flow.(a) Initialisation, (b)after 1/3 of the simu-
lation time, (c) after 2/3 of the simulation time and (d) at the end of the simulation.
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Figure 2: Maximum value of the axial velocity standard deviation along the central line for different grid
resolutions.
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Figure 3: Comparison of the present LES predictions for the average axial velocity against DNS and
experimental data.
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Figure 4: Effects of Riemann solver and numerical reconstruction schemes on the LES results for the
average axial jet velocity distribution: HLLC and CBS Riemann Solvers (top); 9th-order WENO and
5th-order MUSCL schemes (bottom).
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Figure 5: Average velocity distribution (labelled as ‘All’) obtained by averaging all LES solutions. The
numerical error bar is the sum of the estimated error and the standard-error-of-the-mean.
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