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Abstract. A new method representing a modification of the well-known parabolised sta-
bility equations (PSE) is introduced. Compared to the classical form of the PSE this
modification makes it possible to study more general disturbances. Hence, these modified
PSE allow to efficiently predict the spatial evolution of both non-modal and modal distur-
bances in three-dimensional boundary layers.
Employing adjoint-based optimisation, the modified PSE are used to compute spatial opti-
mal disturbances which experience maximum energy amplification and therefore represent
the worst case scenario. It is shown how these optimal disturbances can be used to approx-
imate the response of a boundary layer to free-stream vorticity. Further, it is illustrated
how the modified PSE may be employed directly to study receptivity to free-stream vorticity
in 3D boundary layers.
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1 Introduction

Modelling the transition process of boundary layers to get to know the location of
transition from laminar to turbulent flow is of great interest for the design of airplane
wings. The transition process of boundary layers is mainly characterised by three stages.
These are receptivity, growth and breakdown of disturbances. Receptivity is associated
with the birth of disturbances inside a boundary layer which is exposed to an external
disturbance environment. Acoustic perturbations, surface roughness or free-stream tur-
bulence represent such external disturbances which are filtered by the boundary layer.
The excited disturbances grow while evolving downstream. Initially this growth may be
described by linear theory. Once the disturbances reach a certain amplitude nonlinear
effects will lead to amplitude saturation promoting the growth of secondary instabilities
which will quickly cause the flow to transition from a laminar to a turbulent state.
A complete model of the transition process which can reliably predict the location of
transition should incorporate all three stages. Semi-empirical transition prediction tools,
which are in common use today, are based on the linear amplification of modal distur-
bances only and disregard the disturbance environment. However, the latter is known to
greatly influence the transition process of the boundary layer.
[1] performed experiments to study the disturbance development in three-dimensional
boundary layers in different wind tunnels. The different environmental conditions were
found to strongly influence the disturbance development inside the boundary layer. In a
review [2] reports that stationary crossflow modes dominate in three-dimensional bound-
ary layers exposed to low levels of free-stream turbulence whereas travelling disturbances
dominate in high turbulence level environments. The latter statement was numerically
verified by [3] who study the transition of a Falkner-Skan-Cooke boundary layer exposed
to free-stream turbulence and localised surface roughness. The simulations show that
stationary crossflow modes dominate unless the turbulence intensity of the incoming flow
is larger than 0.5%.
One consequence of these findings is that test results for airplane wings obtained in wind
tunnels might not be readily transferred to free flight conditions where the levels of free-
stream turbulence are relatively low. Hence, both experimental and numerical studies
show that a detailed knowledge of the disturbance environment is necessary to be able
to prescribe the disturbance development inside the boundary layer. Once the external
disturbances are known the task is to identify the disturbances which are excited inside
the boundary layer. However, getting information about the external disturbance envi-
ronment, in particular in the free-stream, is not trivial.
If the external disturbance field is not known it makes sense to consider the worst case
scenario as is outlined by [4]. This implies finding those initial disturbances experienc-
ing maximum energy amplification, the so-called optimal disturbances. These have been
extensively studied for two-dimensional boundary layers over the past few years (see e.g.
[5, 6, 7, 8]). Substantial energy growth of streak-like disturbances has been observed
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in sub-critical boundary layers which are stable with respect to modal disturbances, i.e.
Tollmien-Schlichting waves. This led to the expression non-modal growth.
However, not much work on non-modal and optimal disturbance growth has been per-
formed for three-dimensional boundary layers. Employing a temporal approach both
[10] and [11] showed that also three-dimensional boundary layers exhibit substantial
non-modal growth. The disturbances subject to non-modal growth were found to be
structurally similar to the modal crossflow instabilities which is in contrast to the two-
dimensional case where streaks and Tollmien-Schlichting waves bear no resemblance. This
led to the conclusion by [11] that non-modal growth provides the proper initial conditions
for the growth of modal disturbances and may thus be related to a receptivity mechanism
in three-dimensional boundary layers. To describe this process, i.e. the initiation of modal
instabilities by non-modal growth, a spatial framework is needed and was introduced by
[9] for incompressible three-dimensional boundary layers.
Once some information about the external disturbance environment is available we can
develop models that predict the corresponding boundary layer response. The receptivity
to free-stream turbulence can be modelled by considering the response of the boundary
layer to free-stream vorticity. This approach has been chosen by different previous studies
(see e.g. [12, 13, 14]). In the following we are going to present two methods that allow
to model the receptivity of a three-dimensional boundary layer to vortical free-stream
disturbances and compare respective results to the DNS performed by [14]. Both meth-
ods utilise the spatial approach developed by [9] which represents a modification of the
well-known classical parabolised stability equations (PSE). While the classical PSE only
allow the description of modal instabilities such as crossflow disturbances this method is
used to efficiently compute the downstream development of more general initial, in this
case vortex-type, disturbances.
The first method is based on the assumption that free-stream vorticity excites distur-
bances similar in structure to optimal disturbances in three-dimensional boundary layers.
Hence, an approximation of the boundary layer response can be obtained by projecting
external disturbances onto optimal disturbances. The second method bases upon directly
solving the modified PSE for initial vortical free-stream disturbances.

2 Falkner-Skan-Cooke boundary layer

We study optimal disturbances and receptivity in a Falkner-Skan-Cooke (FSC) bound-
ary layer. This type of boundary layer forming on a swept flat plate which is subject to
a chordwise pressure gradient is considered to be a good model for swept-wing boundary
layers. This is due to the fact that it comprises the effect of both a pressure gradient and
a sweep angle. In the following we consider an FSC boundary layer which has been used
by [14] to study receptivity by means of DNS. The chordwise and spanwise velocities at
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the boundary layer edge are given by

U∞(x) =
Ud
∞(x)

Ud
∞(x0)

=

(
xd

xd0

)m
V∞(x) =

V d
∞(x)

Ud
∞(x0)

= tanφ(x0) = const, (1)

where m = βH/(2 − βH) is related to the pressure gradient and βH denotes the Hartree
parameter which is chosen as βH = 0.333 in the following. The sweep angle is chosen
to be φ = 45◦ while the initial position is xd0 = 167δ∗(x0). The superscript d denotes
dimensional quantities and δ∗ represents the dimensional displacement thickness. The
Reynolds number is Reδ∗0 = Ud

∞(x0)δ∗(x0)/νd = 220 where νd represents the kinematic
viscosity. If not marked specifically all quantities presented in the following are made
non-dimensional using δ∗0 = δ∗(x0) and Ud

∞(x0).

3 Methodology

In this section a modification of the well-known PSE developed by Herbert & Bertolotti
(see e.g. [15]) and Dallmann & Simen (see [16]) is presented. These modified PSE, which
have been introduced by [9], are used to study the spatial evolution of both modal and
non-modal disturbances in three-dimensional boundary layers. They enable us to compute
optimal disturbances as well as to directly determine the boundary layer response to
vortical free-stream disturbances and therefore to study receptivity.

3.1 Governing equations

Our intention is to find a set of linear governing equations which describes the spatial
evolution of disturbances and which is parabolic in nature. Such a system can be solved
efficiently by employing marching techniques and allows for extensive parametric studies.
It is derived from the Navier-Stokes equations which for incompressible flow read

∇ · U = 0 (2a)

∂U
∂t

+ (U · ∇)U = −∇P +
1

Re
∇2U , (2b)

where Re = Ud
ref l

d
ref/ν

d is the Reynolds number based on a reference velocity Ud
ref , a

reference length ldref and the kinematic viscosity νd. The superscript d denotes dimensional
quantities. The pressure is denoted by P and U denotes the velocity vector. Decomposing
the flow field into a mean and a perturbation part, i.e. U = U + u′ and P = P + p′,
subtracting the equations describing the meanflow and linearising by neglecting products
of perturbation quantities leads to the linear stability equations

∇ · u′ = 0 (3a)

∂u′

∂t
+ (u′ · ∇)U + (U · ∇)u′ = −∇p′ + 1

Re
∇2u′. (3b)

Here, mean quantities are denoted by capital letters and a prime denotes perturbation
quantities. The fundamental idea behind the PSE is to decompose the disturbance into a
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slowly varying and a fast oscillatory part. Accordingly, the following normal mode ansatz
is made where the disturbance q′ is decomposed into a shape function q and a phase
function Θ. Hence,

q′(x, y, z, t) = q(x, z) exp iΘ(x, y, t) (4)

Θ(x, y, t) =

∫ x

x0

α(x′)dx′ + βy − ωt (5)

and q = (u, v, w, p)T . The coordinates (x, y, z) denote chordwise, spanwise and wall-
normal directions and (u, v, w) represent the corresponding velocity components. The
chordwise and spanwise wavenumbers are denoted by α and β respectively while ω rep-
resents the angular frequency. In (4) the shape function q(x, z) as well as the chordwise
wavenumber α(x) are assumed to be slowly varying while the exponential part is assumed
to capture the disturbance oscillations. However, the solution ansatz (4) causes an am-
biguity since both the shape function q and the phase function Θ are functions of the
chordwise coordinate x. This ambiguity is resolved by choosing α such that the assump-
tion of a slowly varying shape function is valid. Different approaches may be chosen for
different purposes. Two approaches, a classical one which is restricted to describing modal
disturbances and the one employed in this study allowing for considering more general
disturbances, are presented in section 3.2.
Further, a scale separation between variations in chordwise and wall-normal direction
is introduced. It is assumed that variations in chordwise direction are much slower than
variations in wall-normal direction. Hence, after introducing (4) into (3) chordwise deriva-
tives and the wall-normal mean velocity component are assumed to be of order O(Re−1),
i.e.

∂

∂x
,W → O(Re−1). (6)

Identifying and neglecting all terms which are of order O(Re−2) and higher leads to a
quasi parabolic equation system of the form

Lq = 0 (7)

with L being the linear operator

L = A + B
∂

∂z
+ C

∂2

∂z2
+ D

∂

∂x
. (8)

The operators A, B, C and D are defined in [9]. It should be noted that the scaling
(6) is assumed to be valid for modal disturbances. In order to obtain an approximation
valid for both modal and non-modal growth [17] and [9] employed a composite scaling
consisting of both the PSE scaling and a scaling based on the boundary layer approxi-
mation. Performing such an analysis one additional term, uWx, enters the wall-normal
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momentum equation in (7) which was found to be important for non-modal growth by
[18]. It is therefore included for the present analysis.
Introducing an initial disturbance q0 at a chordwise position x0 we can solve (7) by simply
marching downstream while we require solutions subject to boundary conditions

u = v = w = 0 at z = 0, (9a)

u→ 0, v → 0, w → 0 as z →∞. (9b)

The system (7) is only quasi parabolic in that it exhibits an inherent ellipticity which
can cause numerical instabilities at small stepsizes ∆x (see e.g. [19]). In order to relax
this numerical instability we omit the disturbance pressure gradient px in the chordwise
momentum equation as was proposed by [20]. By comparing to DNS, [9] showed that this
term has only negligible effects on the computed results.

3.2 Choice of α

As discussed previously, the chordwise wavenumber α needs to be chosen such that the
shape function q may be assumed to be slowly varying. Our choice of α represents the
main difference to the classical PSE. In order to highlight these differences we first briefly
discuss the classical approach before introducing the choice that represents an inherent
part of the modified PSE and that has been employed throughout this study.

3.2.1 Classical approach

The classical approach which is employed when considering modal disturbances as-
sumes the chordwise wavenumber to be complex and consists of an additional auxiliary
function of the form ∫ ∞

0

qH
∂q

∂x
dz = 0. (10)

This auxiliary function represents a normalisation condition on the shape function q
and ensures that both the growth and the chordwise oscillations of the disturbance are
captured by the exponential part of (4). The PSE are initiated with a local solution of the
Orr-Sommerfeld/Squire equations (OSS) which provides the initial disturbance in form of
q(x0) and α(x0). The nonlocal evolution of the modal disturbance in a non-parallel flow
is then obtained by marching downstream where the auxiliary condition (10) is enforced
locally at each chordwise position by employing Newton iterations or similar methods
with respect to α. The required initial guess is given by the solution at the respective
previous station which initially is the OSS-solution.

3.2.2 The modified PSE

The initial guess for the complex valued chordwise wavenumber required by the pre-
vious approach is not readily available for an arbitrary initial disturbance. In order to
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make the PSE capable of predicting the downstream evolution of vortex-type initial dis-
turbances we follow the approach proposed by [9]. They computed the spatial evolution
of optimal disturbances based on a constant phase approach.
We choose the chordwise wavenumber to be a real-valued function such that the oscilla-
tions of the disturbance are absorbed by the exponential part of (4). If we normalise q
by introducing a complex amplitude A(x) such that q(x, z) = A(x)q̂(x, z) we can rewrite
(4) according to

q′(x, y, z, t) = |A(x)| exp
(
iϑ(x)

)
q̂(x, z) exp

(
iΘ(x, y, t)

)
(11a)

= |A(x)|q̂(x, z) exp
(
iΘ̂(x, y, t)

)
, (11b)

where ϑ represents the phase of the complex amplitude A(x) and the phase function
Θ̂(x, y, t) is defined as

Θ̂(x, y, t) = ϑ(x0) +

∫ x

x0

(
α(x′) +

∂ϑ

∂x′

)
dx′ + βy − ωt. (12)

This formulation allows to identify a new auxiliary condition. If ϑ is constant all the
oscillations of q′ are absorbed by the exponential part of (4). We thus require that

ϑ(x) = const ⇔ ∂ϑ

∂x
= 0. (13)

We will enforce this condition globally through the following iteration procedure where k
denotes the number of iterations.
1.) Choose a reasonable initial guess for the real-valued αk=1(x) for the whole domain. In
the present case a good initial guess can be obtained by assuming the line of constant phase
to coincide with the external streamline. This is a good first approximation since the wave
rays of streaks and crossflow modes are known to closely follow the external streamline in
three-dimensional boundary layers. Note that the direction of the wavevector is normal
to the line of constant phase at each position x.
2.) Solve the equation system (7) for an initial disturbance q0 using αk.
3.) Compute the new candidate chordwise wavenumber according to

αk+1 = αk +
∂ϑ

∂x
(14)

4.) Continue with 2.) and repeat until the disturbance energy growth is converged.

This iteration procedure ensures that ∂ϑ/∂x ≈ 0 and that the periodic variations of
the disturbance are almost entirely captured by the exponential part of (4). Now we
can assume the shape function to be slowly varying in chordwise direction as is required
for the PSE to be valid. However, since the chordwise wavenumber is chosen to be a
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real number the disturbance growth is absorbed by the shape function. Strongly growing
disturbances may thus fall out of reach of the equations.
A question that remains to be answered is how the complex amplitude A(x) and thus the
normalisation should be chosen which determine the phase function ϑ. As is outlined in [9]
the phase of q can not be uniquely defined since different components of q exhibit different
phases. The most reasonable choice is therefore to base ϑ on the disturbance velocity
component which comprises the major part of the disturbance energy. For streak-like
disturbances and crossflow modes in three-dimensional boundary layers this is the velocity
component uφ which is tangential to the line of constant phase (see [9]). This choice is
also most appropriate here since we will consider crossflow disturbances and vortical free-
stream modes where the latter will quickly evolve into streak-like disturbances due to the
lift-up effect. We therefore choose A(x) = uφ,max which denotes the wall-normal maximum
of uφ and obtain the corresponding phase ϑ according to

ϑ(x) = arctan
=(A(x))

<(A(x))
, (15)

where = and < denote the imaginary and real parts of a complex number respectively.
It is just an initial region very close to the initial position where uφ might not represent
the most energetic flow quantity. Here initial disturbances evolve into streaks or crossflow
disturbances and the phases of the initial disturbances can vary rapidly. In those cases
α is determined according to the described procedure starting from the position where
most of the energy (0.9 − 0.99%) is contained in uφ. For the region upstream of that
position, which we experienced to be very small, α is chosen constant in order to obtain
rapid convergence of the results.
The approach outlined in this section which we will refer to as the modified PSE through-
out this paper allows to study the evolution of all disturbances whose wave rays closely
follow the external streamline. This includes streak-like and crossflow disturbances. More-
over we are now able to compute optimal disturbances by employing an appropriate op-
timisation and to predict the response of three-dimensional boundary layers to vortical
free-stream disturbances.

The validity of the approximations made above is approved in figure 1 where we com-
pare the downstream evolution of a crossflow mode predicted by the modified PSE and by
DNS. The N -factor N(x) = 0.5 ln (E(x)/E(x0)) as well as the growth rate σ(x) = ∂N/∂x
are shown. Here, E(x) = E(q(x)) denotes the energy norm of the disturbance q at the
chordwise position x. In general we define the energy norm as

E(x) =

∫ ∞
0

q(x)HMq(x) dz =

∫ ∞
0

[
u(x)2 + v(x)2 + w(x)2

]
dz, (16)

where M = diag(1, 1, 1, 0) represents a weight matrix ensuring that the pressure does
not contribute and the superscript H denotes complex conjugate. The results of both
methods are in perfect agreement.
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Figure 1: Evolution of crossflow modes in an FSC boundary layer studied by [14] with βH = 0.333 and
Λ = 45◦ computed by means of the modified PSE (—), and DNS (◦). The growth rate σ and the N -
Factor are shown for a travelling crossflow mode with (a) β = −0.14 and ω = −0.01 and (b) a stationary
crossflow mode with β = −0.19. Partly taken from [9].

4 Optimal disturbances

We want to compute the optimal disturbance q that experiences maximum energy
amplification at a specific chordwise position x1. This means that we want to maximise
the objective function J(q) = E1/E0 where the subscripts 0 and 1 refer to the initial
position and the position of maximum amplification respectively. In order to find the
disturbance that maximises J(q) we consider the Lagrange functional

L(q,q?) = J(q)−
∫∫

Ω

(q?)HLq dx dz. (17)

Here, q? is the Lagrange multiplier, also called adjoint variable, and Ω = [x0, x1]× [0,∞].
The roots of the first variation of (17), which becomes

δL =

∫∫
Ω

(∇q?L)Hδq? dx dz +

∫∫
Ω

(∇qL)Hδq dx dz, (18)

will then represent the optimal disturbance and its corresponding adjoint. ∇q denotes a
gradient with respect to q. To obtain the roots both inner products in (18) have to render
zero independently. Setting the first inner product to zero implies solving (7) such that
Lq = 0. The second inner product will be zero if ∇qL = 0. This gradient is most easily
obtained by adopting the identity∫∫

Ω

(q?)HLq dx dz =

∫∫
Ω

(L?q?)Hq dx dz + boundary terms (19)

which is derived by employing integration by parts. Rendering the second inner product
of (18) zero thus implies solving the so-called adjoint equations L?q? = 0. The boundary
terms in (19) then provide the optimality conditions which relate the solutions of (7) and
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Figure 2: Optimal disturbances with β = −0.14 and ω = −0.01. Velocity vectors (u, v, w) and coloured
planes representing uφ (the velocity component in the direction of the line of constant phase) of the
optimal disturbance. Red and blue colours denote positive and negative velocities respectively. For
visualisation purposes the horizontal plane which corresponds to z = 4 was shifted to z = 0.

the adjoint equations at x0 and x1 respectively.
The optimality system is practically solved by employing the following iterative proce-
dure. We start by integrating (7) for an arbitrary initial disturbance q(x0) where α(x)
is determined according to the approach outlined in 3.2.2. At x1 we obtain the initial
adjoint disturbance q?(x1) as a function of q(x1) by employing the optimality condition
and then integrate the adjoint equations backward in space from x1 to x0. Considering the
optimality conditions at x0 we then obtain a new candidate optimal initial disturbance
q(x0) as a function of q?(x0). This procedure is repeated until the energy growth has
converged. A more detailed derivation of the optimality system is given in [9].

Figure 2 and figure 3 depict the downstream development of an optimal disturbance
whose energy growth is maximised for x1 = 2067. Initially, the disturbance takes
the form of vortices which are tilted against the mean crossflow shear. While travelling
downstream they rise into an upright position and develop into bended streaks. These
in turn evolve into modal crossflow disturbances when entering the supercritical domain.
This is nicely depicted in figure 3 where the energy growth of both the optimal disturbance
and the corresponding modal crossflow disturbance are shown. Further, it becomes clear
from figure 3 that non-modal growth is of significant order in three-dimensional boundary
layers. The observed optimal growth is more than two orders of magnitude larger than
the modal growth of the crossflow disturbance in this case. Combining these observations
we can conclude that non-modal growth is the result of two different physical effects.
The first one is the well-known lift-up effect where streamwise vortices produce streaky
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Figure 3: N-factor of both the optimal disturbance and the corresponding crossflow mode with x0 = 167,
x1 = 2067, β = −0.14 and ω = −0.01 obtained by solving the modified PSE.

structures by displacing fluid particles vertically which keep their horizontal momentum.
The second effect is the Orr-mechanism where tilted vortices extract energy from the
meanflow while being erected.

5 Receptivity

Modelling the receptivity process means to describe the initiation of boundary layer
instabilities such as crossflow disturbances. In this section we develop two approaches that
provide initial amplitudes of crossflow modes in a boundary layer which is exposed to free-
stream vorticity. The latter is considered to be a good basis for modelling free-stream
turbulence. The first approach approximates initial amplitudes by projecting free-stream
disturbances onto the formerly obtained optimal disturbances. The second approach is
based on a direct solution of the modified PSE for initial vortical free-stream disturbances.
Eigenfunctions associated with the continuous spectrum of the Orr-Sommerfeld (OS)
equation are used to represent unsteady vortical free-stream disturbances. They have
been used for similar purposes by [14]. These, so called, continuous modes are oscillatory
in the free-stream and damped toward the wall. In the free-stream the Orr-Sommerfeld
equation simplifies to a homogeneous ordinary differential equation of the form

(D2 − α2 − β2)2w − iRe(αU∞ + βV∞ − ω)(D2 − α2 − β2)w = 0 (20)

and an analytical dispersion relation is obtained which reads

α =
1

2
i
(√

(ReU∞)2 + 4(iRe(βV∞ − ω) + β2 + γ2)−ReU∞
)
. (21)

Here, the wall-normal wavenumber is denoted by γ and D = ∂/∂z. Using the dispersion
relation (21) and a boundedness condition in the free-stream the eigenfunction of the
continuous OS-mode can be determined numerically. For details the reader is referred
to [14]. An example of such an eigenfunction in a Falkner-Skan-Cooke boundary layer is
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Figure 4: Shape functions of u, v and w of a continuous spectrum eigenmode of the Orr-Sommerfeld
equation in a Falkner-Skan-Cooke boundary layer for γ = 0.126, x = 167, β = −0.14 and ω = −0.01.

shown in figure 4. Note that a full representation of free-stream vorticity would also require
a solution to the Squire equations which represents the wall-normal vorticity component.
However, as outlined in [14] the Orr-Sommerfeld and Squire solutions evolve independently
upstream of the leading edge if the incoming turbulent flow is homogeneous and isotropic.
The coupling between the two solutions is a slow viscous process which is initiated at the
leading edge. Hence, the shape of the OS solution a short distance downstream of the
leading edge is barely affected by the coupling.
In the following we quantify receptivity, i.e. the initial amplification of crossflow modes,
by determining receptivity coefficients. A receptivity coefficient CV = CV (β, ω, γ, x0) is
defined according to

CV =
AR
εv
. (22)

AR denotes the receptivity amplitude, i.e. the equivalent amplitude the excited pure
crossflow mode must have at the initial position in order to finally attain the same ampli-
tude as the boundary layer disturbance which evolves as a response to free-stream modes.
εv denotes the maximum amplitude of the vortical free-stream mode. Both amplitudes
are determined as the wall-normal maximum of urms.

5.1 Projection onto optimal disturbances

The fact that optimal disturbances take the form of vortices initially and develop into
modal disturbances further downstream suggests to project vortical disturbances to opti-
mal ones at some initial position x0. In this way, response amplitudes for modal crossflow
instabilities and the corresponding receptivity coefficients are approximated.
Hence, for each vortical free-stream disturbance with parameters (x0, β, ω, γ) the respec-
tive optimal disturbance qopt(ω, β) is computed. Then the free-stream disturbance q(x0)
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Figure 5: Dependence of the receptivity coefficient CV on (a) the spanwise wavenumber β, (b) the wall-
normal wavenumber γ, (c) the frequency ω and (d) the initial position x0. Comparison between results
obtained by projecting vortical free-stream disturbances to optimal disturbances (—) and the DNS of
[14](---). Parameters (x0, β, ω, γ) = (167,−0.19,−0.01, 0.126) represent the basis from which individual
parameters are varied.

is projected to the optimal disturbance qopt(x0) employing the energy inner product

cpr =

∫∞
0

q(x0)HMqopt(x0) dz∫∞
0

qopt(x0)HMqopt(x0) dz
, (23)

where cpr denotes the projection coefficient. The approximate response of the boundary
layer is then given by the disturbance

qpr = cprqopt. (24)

Receptivity coefficients obtained by using this projection technique are presented in fig-
ure 5 and compared to those [14] obtained by employing DNS. For this parametric study
the parameters (x0, β, ω, γ) = (167,−0.19,−0.01, 0.126) are taken as a basis from which
each individual parameter is varied. We obtain a reasonable agreement to the DNS re-
sults. The order of magnitude of the receptivity coefficients is correctly predicted and
similar trends as those observed from DNS are reproduced. Considering figure 5 (a) the
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Figure 6: Comparison between the vortical free-stream disturbance (---) and the initial disturbance
qpr(x0) obtained through projection (—). x0 = 167, ω = −0.01, β = −0.19 and γ = 0.126

same spanwise wavenumber β yielding maximum receptivity as in the DNS simulations
is obtained. Also, CV decreases with increasing x0 as becomes apparent from figure 5
(d). Further, the initial decay of CV with respect to γ is reproduced by the projection
procedure. The largest discrepancies are obtained for low values of ω and for high values
of γ. However, the free-stream modes of high γ which [14] found to deeply penetrate into
the boundary layer might in practice be irrelevant. This is due to the fact that the turbu-
lent kinetic energy of turbulent flow fields is usually concentrated at small wavenumbers.
Since the magnitudes of the here computed receptivity coefficients are generally higher
than the DNS results we can conclude that the projection technique provides predictions
which are on the “safe side”.
By comparing the initial disturbance qpr(x0) resulting from the projection to the initial
vortical free-stream disturbance (see figure 6) it becomes clear how the performance of this
technique might be improved. The comparison shows that a single optimal disturbance
constitutes a rather incomplete basis for representing vortical free-stream disturbances
in form of continuous OS modes. The projection coefficient becomes very small and the
resulting initial disturbance does not reflect the shape of the free-stream mode correctly.
Enlarging the basis by computing an additional number of orthogonal basis functions
would probably improve the performance of this approach. Such orthogonal eigenfunc-
tions are not straightforward to obtain though since three-dimensional boundary layers
are very unstable. Methods based on projecting out existing basis functions, i.e. Gram-
Schmidt or Arnoldi, are difficult to employ because any numerical noise will again lead
to the optimal disturbance and the resulting new orthogonal basis function will be zero.

5.2 Directly solving the modified PSE

The evolution of crossflow modes predicted by the modified PSE is in excellent agree-
ment with DNS results as is shown by [9] (see also figure 1). Figure 7 (a) shows that
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Figure 7: (a) Spatial evolution of the boundary layer disturbance excited by a continuous Orr-Sommerfeld
mode with γ = 0.126, β = −0.14 and ω = −0.01. Comparison between DNS (---) and PSE (—) results
where the modified PSE was employed. Ai denotes the wall-normal maximum of the disturbance velocity
components urms, vrms and wrms respectively. (b) Comparison between the disturbance profiles of the
boundary layer response (—) and the shape functions of a pure crossflow mode (symbols) at the last
station x = 2067. u (◦), v (�) and w (.) are shown.

also the boundary layer response to free-stream vorticity is almost perfectly predicted by
the modified PSE. Here, the continuous Orr-Sommerfeld mode presented in figure 4 is
introduced at x0 = 167 and the downstream evolution of the disturbance is computed
employing the modified PSE. A comparison of the computed boundary layer response to
the DNS results by [14] shows that even the initial transient part is well described by the
modified PSE. Hence, the amplitude of the excited crossflow mode is predicted correctly.
Figure 7 (b) compares the boundary layer response at the final position to the shape func-
tions of a pure crossflow mode. The perfect agreement shows that the excited boundary
layer disturbance has developed into a crossflow mode. This exemplifies a direct recep-
tivity mechanism where the excited boundary layer disturbance experiences non-modal
growth initially and evolves into a crossflow mode further downstream.
We again perform the same parametric study that was conducted by [14]. The results
are shown in figure 8. In general the comparison between the results of the modified PSE
and DNS is very good. The values of CV are similar and the trends observed from the
DNS results are also predicted by the modified PSE. Figure 8 (a) shows that maximum
receptivity is obtained for β = −0.15. The receptivity with respect to frequency presented
in figure 8 (b) increases for smaller moduli of ω. The largest differences between results
from modified PSE and DNS are again observed for high values of γ as can be seen in
figure 8 (c). For lower values of γ receptivity coefficients obtained from both methods are
very similar showing that receptivity is most efficient at large wall-normal length scales.
Also the general trends, i.e. a minimal receptivity coefficient for intermediate scales as
well as increasing coefficients for higher values of γ are apparent from the solutions of the
modified PSE. As discussed before, the free-stream modes of high γ which are predicted
worst by the modified PSE might be irrelevant in praxis. Finally, figure 8 (d) reveals that
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Figure 8: Dependence of receptivity coefficients CV on (a) the spanwise wavenumber β, (b) the wall-
normal wavenumber γ, (c) the frequency ω and (d) the initial position x0. Comparison between
the solution of the modified PSE (—) and the DNS results by [14] (---). Parameters (x0, β, ω, γ) =
(167,−0.19,−0.01, 0.126) represent the basis from which individual parameters are varied.
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also the dependence of receptivity with respect to the position of inception is predicted
correctly by the modified PSE.
The small differences between results from DNS and modified PSE which generally be-
come apparent from figure 8 may be due to several reasons. One reason is that [14] employ
a fully spectral DNS code which builds on a Fourier representation along the chordwise
direction. The required chordwise periodicity is obtained by using a fringe region where
the vortical free-stream modes are introduced. The receptivity process might thus already
have been initiated before the disturbance passes the position of inception x0. Another
small error may be introduced by the PSE approximation.

6 Conclusions & Outlook

A new method has been presented which was introduced by [9] and which represents
a modification of the well-known PSE. These modified PSE allow to efficiently predict
the evolution of both modal and non-modal disturbances in three-dimensional boundary
layers and are therefore perfectly suited to study optimal disturbances and receptivity.
We computed optimal disturbances and showed that three-dimensional boundary layers
have a significant potential for non-modal growth. Since optimal disturbances take the
form of vortices initially and evolve into crossflow modes further downstream we conclude
that non-modal growth initiates modal disturbances. It is therefore related to a receptiv-
ity mechanism.
Two methods have been developed which determine the response of three-dimensional
boundary layers to free-stream vorticity. Eigenmodes of the continuous spectrum of the
Orr-Sommerfeld equation have been used to model free-stream vorticity.
The first method which provides an approximation of the boundary layer response by pro-
jecting vortical free-stream disturbances to optimal ones yields reasonable results. The
obtained receptivity coefficients are of the correct order of magnitude and several trends
can be reproduced. The advantage of this method is that optimal disturbances need to be
computed only once. The response to different free-stream disturbances is then obtained
very efficiently by projection.
The second method determines the boundary layer response by directly solving the mod-
ified PSE where the vortical free-stream disturbances are taken as initial disturbances.
The performance of this method is remarkable. The agreement to DNS results is very
good for almost the whole parameter space. In particular, it should be noted that the
modified PSE provide results at a small fraction of the time required for direct numer-
ical simulations. Hence, the modified PSE represent a suitable tool for the analysis of
receptivity in three-dimensional boundary layers.

Future work will focus on developing models to determine the response of the boundary
layer to free-stream turbulence. A possible approach would be to connect initial direct
numerical simulations to the linear modified PSE. Furthermore it is easy to extend the
modified PSE such that effects of compressibility and wall curvature can be accounted
for. Hence, performing parametric studies of receptivity for compressible boundary layers

17



D. Tempelmann, A. Hanifi and D. S. Henningson

on curved walls would represent another interesting continuation.
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