
V European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2010

J. C. F. Pereira and A. Sequeira (Eds)
Lisbon, Portugal,14-17 June 2010

SOLUTION OF THE 2D NAVIER-STOKES EQUATIONS WITH THE
LBIE METHOD AND RBF CELLS

Jevgenija Pavlova∗, Sellountos J. Euripides∗ and Adélia Sequeira∗
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Abstract. This work presents the Local Boundary Integral Equation (LBIE) method
for the solution of two dimensional incompressible fluid flow problems governed by the
Navier-Stokes equations. The method uses, for its implementation, continuous and special
discontinuous (RBF) cells over the analyzed domain for the interpolation of the interior
and boundary variables. This technique leads to a fast and efficient approach, the locality
of the method is maintained and the system matrices are banded with small bandwidth.
The velocity - vorticity approach of the Navier-Stokes equations is adopted and the LBIEs
are derived for the velocity and the vorticity field, resulting in a very stable and accu-
rate implementation. The evaluation of the volume integrals is accomplished via a very
efficient and accurate technique by parameterizing the local area of the nodal point and
evalutating all integrals in the parametric cell plane. Numerical examples illustrate the
proposed methodology and demonstrate its accuracy.
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1 INTRODUCTION

Many numerical methodologies have been developed so far to solve problems dealing
with incompressible fluid flows. Here one can mention the Finite Differences (FDM),
the Finite Elements (FEM), the Finite Volumes (FVM) and Boundary Elements (BEM)
as the most widely used methods. However, in spite of their success, the FDM and
FEM suffer of mesh problems, solution instabilities when the stability inf-sup conditions
are not satisfied and difficulties associated with the treatment of the incompressibility
condition [18]. Although many of these problems can be circumvented with the use of a
velocity-vorticity approach, instead of the velocity - pressure formulation of Navier-Stokes
equations,the problem of requiring good quality meshes remains ([6], [13], [14]). Many of
the aforementioned problems with FEM have already been successfully solved with the
development of advanced multiscale and related schemes. Someone here could mention
the works of Masud and Khurram [21], Gravemeier et al. [8], the works of Codina and
Soto [4] as well as the fractional step method [22]. In constrast with the FEM, the BEM
as it is presented in the works of Alujevic et al [1], Skerget and Rek [27], Skerget et al [28]
and Hribersek and Skerget [16] [35] has the distinct advantages over the FDM and FEM
of treating without any problem the incompressibility condition and requiring less ex-
pensive discretizations. Nevertheless, the final system of linear algebraic equations taken
by a BEM formulation leads to unsymmetric and full-populated matrices, the numerical
treatment of which is very time consuming. Although some polyregion BEM formulations
(Grigoriev and Dargush [9]) accelerate the solution process, the non local nature of the
BEM affects negatively its efficiency. Recently, Zhu et al [32] [33] proposed a meshless
method, called Local Boundary Integral Equation (LBIE) method, as an alternative to
the BEM. This method seems to avoid the aforementioned problems associated with the
conventional BEM, offering simultaneously the advantages of a meshless method where
neither domain nor surface discretization is required. In this LBIE methodology properly
distributed nodal points without any connectivity requirement are covering the domain of
interest as well as the surrounding global boundary. All these nodal points are positioned
in the center of regular sub-domains e.g. circles for two-dimensional problems. At each
nodal point, the field is represented through the conventional integral equation used in
a BEM which contains integrals defined on the regular boundary of the aforementioned
subdomains. The field at the local and global boundaries as well as in the interior of
the sub-domains are approximated by a Moving Least Square (MLS) scheme. The local
nature of the sub-domains leads to a final linear system of equations, with a coefficient
matrix which is sparse and not full-populated as in the case of the BEM.
In the present work the interpolation of the unknown field is achieved with the intro-
duction of the Radial Basis Functions (RBF), for the following three reasons. The first
reason is that RBFs maintain the local nature of the proposed LBIE methodology and
are independent of any elemental connectivity. Thus it is possible to do a remeshing by
adding, removing or moving any nodal point without any difficulty. The second reason is
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that RBFs posseses the delta property, a fact that makes the imposition of the boundary
conditions straighforward and simple. Also this important property eventually leads to
the reduction in size of the system of equations for those points where u is known, like the
FEM. In the present work, the size reduction is done in the transport integral equation.
The third reason for the use of RBFs is their computational efficiency, since every nodal
point is associated with a RBF matrix, with small dimension. The inverse of the matrix
is computed only once for every nodal point, and the interpolation functions and their
derivatives can easily be computed in a less costly way by a simple internal product.
The paper is organized as follows. In the first section the local boundary-volume integral
equations for both the kinematics and the transport kinetics are derived. The next section
is devoted to the derivation of the discretized integral equations for the kinematics and
kinetics and to the assembly of the system of equations. Finally, the method is applied
to one well known benchmark for fluid flow problems and the accuracy of the proposed
methodology is demonstrated.

2 LOCAL INTEGRAL EQUATION

Incompressible fluid flows are modeled by means of the conservation of mass and mo-
mentum equations, respectively [34]

∇ · u = 0 (1)

∂u

∂t
+ u · ∇u = −1

ρ
∇P + ν∇2u (2)

where u represents the velocity field, P is the pressure and ρ, ν stand for the density
and the diffusion coefficient (viscosity), respectively. It is well known (see e.g. [16]) that
numerical methods based on the weak formulations of Eqs (1) and (2) have numerical
instabilities related to the presence of the pressure gradient term. This term can be cir-
cumvented by adopting the velocity-vorticity formulation, which is obtained by applying
the curl operator in both Eqs (1) and (2), i.e.

∇2u +∇× ω = 0 (3)

∂ω

∂t
+ u · ∇ω − ω · ∇u− ν∇2ω = 0 (4)

with ω beeing the vorticity vector defined as

ω = ∇× u (5)

In two dimensional flows, where the vorticity vector is always perpendicular to the plane
of the flow (ω · ∇u = 0), Eqs (3) and (4) are written in the following simplified form:

∂2ui
∂xj∂xj

+ eij
∂ω

∂xj
= 0 (6)
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Figure 1: Local support domains r, boundary segments Γs, local circular surfaces Ls and local volumes
Ωs.

∂ω

∂t
+ uj

∂ω

∂xj
− ν ∂

2ω

∂x2
j

= 0 (7)

The coupled Eqs (6) and (7), known as velocity-vorticity formulation [12] of the Navier-
Stokes equations (1) and (2), represent the kinematic and the kinetic dynamics of an
incompressible Newtonian fluid. The corresponding initial boundary value problem must
be complemented with the initial conditions

ui (x, 0) = u
(0)
i

ωi (x, 0) = ω
(0)
i

for x ∈ Γ (8)

and one of the following boundary conditions

ui (x, t) = ūi
ωi (x, t) = ω̄i

for x ∈ Γ (9)

2.1 Local integral equations for flow kinematics

Consider a 2D domain Ω with a smooth boundary Γ, for the flow of an incompressible
Newtonian fluid (Fig 1). Eqs (6)-(7) with the initial and boundary conditions (8)-(9)
form a well posed boundary value problem which admits a boundary-domain integral
representation [28] of the form:

c (y) u (y) +

∫
Γ

(∇u∗ · n) u dΓ =

∫
Γ

(∇u∗ × n)× u dΓ +

∫
Ω

(ω ×∇u∗) dΩ (10)

Here c is a jump coefficient being equal to 1 for interior points and equal to 0.5 for points
belonging to the smooth boundary Γ and u∗ is the fundamental solution of the Laplace
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operator having the form

u∗ =
1

2π
Log

(
1

r

)
(11)

with r = |y − x| representing the distance between the reference point y and the source
point x. Here and in the sequel n denotes the outward unit vector normal to the boundary.
It is apparent that the fundamental solution (11) becomes singular only when the field
point y coincides with the source point x. Thus, considering a local circular sub-domain
Ωs with boundary Ls centered at point y and applying Green’s integral identity in the
domain lying between the global and local boundaries Γ and Ls, respectively, it is easy to
see that Eq (10) can be replaced by the following local boundary-volume integral equation

c (y) u (y) +

∫
Γs∪Ls

(∇u∗ · n) u dΓ =∫
Γs∪Ls

(∇u∗ × n)× u dΓ+ (12)∫
Ωs

(ω ×∇u∗) dΩ

where Γs is part of the global boundary intersected with the local sub-domain Ωs, as
illustrated in Fig (1). When the unknown boundary condition is the tangential component
of the velocity vector or the vorticity, the tangential form of Eq (12) is considered [16], [1]

c (y) n (y)× u (y) +n (y)×
∫

Γs∪Ls

(∇u∗ · n) u dΓ =

n (y)×
∫

Γs∪Ls

(∇u∗ × n)× u dΓ+

n (y)×
∫

Ωs

(ω ×∇u∗) dΓ (13)

Similarly, in cases where the normal component of the velocity is unknown, then the
normal form of Eq (12) should be taken into account, i.e.

c (y) n (y) · u+n (y) ·
∫

Γs∪Ls

(∇u∗ · n) u dΓ =

n (y) ·
∫

Γs∪Ls

(∇u∗ × n)× u dΓ+

n (y) ·
∫

Ωs

(ω ×∇u∗) dΓ (14)
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2.2 Local integral equations for flow kinetics

Since the first time derivative of the vorticity appears in Eq (7), it is convenient to
employ the finite differences scheme

∂ω

∂t
=
ω − ωt−1

∆t
(15)

where ωt−1 is the vorticity field at the previous time step and ∆t is the considered time
interval. In view of Eq (15), Eq (7) takes the form

∂2ω

∂x2
j

− 1

ν
uj
∂ω

∂xj
− 1

ν

ω

∆t
+

1

ν

ωt−1

∆t
= 0 (16)

or

∂2ω

∂x2
j

+ b = 0 (17)

where b represents the body forces

b = −1

ν
uj
∂ω

∂xj
− 1

ν

ω

∆t
+

1

ν

ωt−1

∆t
(18)

Exploiting the Laplace fundamental solution (11) and applying Green’s second identity
for the scalars u∗ and ω, one obtains the following integral equation:

c (y)ω (y) +

∫
Γ

∂u∗

∂n
ω dΓ =

∫
Γ

u∗
(
∂ω

∂n
− 1

ν
unω

)
dΓ +

1

ν

∫
Ω

∂u∗

∂xj
ujω dΩ−

1

ν∆t

∫
Ω

u∗ω dΩ +
1

ν∆t

∫
Ω

u∗ωt−1 dΩ (19)

where un = ujnj. For a point y surrounded by the local boundary Γs ∪ Ls Fig (1), Eq
(19) takes the form

c (y)ω (y) +

∫
Γs∪Ls

∂u∗

∂n
ω dΓ =

∫
Γs∪Ls

u∗
(
∂ω

∂n
− 1

ν
unω

)
dΓ+

1

ν

∫
Ωs

∂u∗

∂xj
ujω dΩ− 1

ν∆t

∫
Ωs

u∗ω dΩ +
1

ν∆t

∫
Ωs

u∗ωt−1 dΩ (20)

In order to get rid of the term
(
∂ω
∂n
− 1

ν
unω

)
, defined on the local boundaries Ls, a com-

panion solution is employed [32]. This solution satisfies the Laplace equation and is equal
to the fundamental solution u∗ on the local boundary Ls. It has the form

uc =
1

2π
Log

(
1

r0

)
(21)
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with r0 representing the radius of the local domain Ωs.Applying Green’s second identity
to the scalars u∗ and uc and subtracting the resultant integral equation from Eq (20) one
finally obtains

c (y)ω (y) +

∫
Γs∪Ls

∂u∗

∂n
ω dΓ =

∫
Γs

(u∗ − uc)
(
∂ω

∂n
− 1

ν
unω

)
dΓ+

1

ν

∫
Ωs

∂u∗

∂xj
ujω dΩ− 1

ν∆t

∫
Ωs

(u∗ − uc)ω dΩ +
1

ν∆t

∫
Ωs

(u∗ − uc)ωt−1 dΩ

(22)

It should be noted that in the local integral Eq (22) the diffusive term is expressed by
the boundary integrals exclusively, and the convective term is expressed by the boundary
and the volume integrals containing the velocity vector.

3 DISCRETIZATION AND NUMERICAL IMPLEMENTATION

3.1 Kinematics integral equation

In the present formulation the kinematics system of equations consists of unknown
velocities and vorticities for internal and boundary points.
For the boundary points the integral Eq (12) should be employed. However, due to the
singularity that appears in the diagonal elements [28], the tangent (13) or the normal (14)
forms of this equation should be used.
The discretized form of the integral Eq (13) for a boundary collocation node y with the
neighborhood nodal points yk is the following

c (y)n (y)× u (y) + n (y)×
∫

Γsu

∂u∗

∂n

 ux
uy
0

 dΓ+

n (y)×
∫

Γs

∂u∗

∂n
Φ (yk) dΓ

 ux
uy
0


(yk)

+ n (y)×
∫
Ls

∂u∗

∂n
Φ (yk) dΓ

 ux
uy
0


(yk)

=

n (y)×
∫

Γsu

∂u∗

∂t

 uy
−ux

0

 dΓ + n (y)×
∫

Γs

∂u∗

∂t
Φ (yk) dΓ

 uy
−ux

0


(yk)

+

n (y)×
∫

Ωs

 −∂u∗

∂y
∂u∗

∂x

0

Φ (yk) dΩ [ω](yk) (23)

Note that the integral envolving the ∂u∗

∂t
along the circular arc is always zero, since the

vector r = y − x representing the distance between the source and the reference point is
always perpendicular to the tangential vector t. ux and uy are the cartesian components
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of the velocity field, defined either on the nodal point y or on the neighborhood nodal
points yk. The previous vector equation produces the following scalar equation

c (y)nx (y)uy (y) − c (y) ny (y)ux (y) + nx (y)H
ūy

Γs
− ny (y)H ūx

Γs
+

nx (y)Hk
Γs
uy (yk)− ny (y)Hk

Γs
ux (yk) + nx (y)Hk

Ls
uy (yk) − ny (y)Hk

Ls
ux (yk) =

−nx (y)T ūx
Γs
− ny (y)T

ūy

Γs
− nx (y)T kΓs

ux (yk) − ny (y)T kΓs
uy (yk) +[

nx (y)Dk
x + ny (y)Dk

y

]
ω (yk) (24)

Writing the above equation for every boundary nodal point, where either the vorticity or
the tangential component of the velocity vector are unknowns, and imposing the boundary
conditions accordingly, the line of the system of equations that corresponds to the nodal
point y is derived. When the normal component of the velocity field is unknown, then
the following discretized form of Eq (14) is used for the boundary nodal point y

c (y)n (y) · u (y) + n (y) ·
∫

Γsu

∂u∗

∂n

[
ux
uy

]
dΓ+

n (y) ·
∫

Γs

∂u∗

∂n
Φ (yk) dΓ

[
ux
uy

]
(yk)

+ n (y) ·
∫
Ls

∂u∗

∂n
Φ (yk) dΓ

[
ux
uy

]
(yk)

=

n (y) ·
∫

Γsu

∂u∗

∂t

[
uy
−ux

]
dΓ + n (y) ·

∫
Γs

∂u∗

∂t
Φ (yk) dΓ

[
uy
−ux

]
(yk)

+

n (y) ·
∫

Ωs

[
−∂u∗

∂y
∂u∗

∂x

]
Φ (yk) dΩ [ω](yk) (25)

which gives the following scalar equation

c (y)nx (y)ux (y) + c (y)ny (y)uy (y) + nx (y)H ūx
Γs

+ ny (y)H
ūy

Γs
+

nx (y)Hk
Γs
ux (yk) + ny (y)Hk

Γs
uy (yk) + nx (y)Hk

Ls
ux (yk) + ny (y)Hk

Ls
uy (yk) =

nx (y)T
ūy

Γs
− ny (y)T ūx

Γs
+ nx (y)T kΓs

uy (yk)− ny (y)T kΓs
ux (yk) +[

−nx (y)Dk
y + ny (y)Dk

x

]
ω (yk) (26)

This equation should be rearranged according to the boundary conditions. Finally, for an
internal point the following discretizated form of Eq (12) is employed[

ux (y)
uy (y)

]
+

∫
Γsu

∂u∗

∂n

[
ux
uy

]
dΓ +

∫
Γs

∂u∗

∂n
Φ (yk) dΓ

[
ux
uy

]
(yk)

+∫
Ls

∂u∗

∂n
Φ (yk) dΓ

[
ux
uy

]
(yk)

=

∫
Γsu

∂u∗

∂t

[
uy
−ux

]
dΓ+∫

Γs

∂u∗

∂t
Φ (yk) dΓ

[
uy
−ux

]
(yk)

+

∫
Ωs

[
−∂u∗

∂y
∂u∗

∂x

]
Φ (yk) dΩ [ω](yk) (27)
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which can be written in the vector form[
ux (y)
uy (y)

]
+

[
H ūx

Γs

H
ūy

Γs

]
+Hk

Γs

[
ux
uy

]
(yk)

+Hk
Ls

[
ux
uy

]
(yk)

=[
T
ūy

Γs

−T ūx
Γs

]
+ T kΓs

[
uy
−ux

]
(yk)

+

[
−Dk

y

Dk
x

]
[ω](yk) (28)

This equation needs also to be rearranged according to the boundary conditions. For
the interior points the velocity vector is considered always unknown and the vorticity
is known. Combining Eqs (24), (26) and (28) the final system of equations Ax = b is
derived. It is in band form and is solved for the boundary vorticities or velocities and
interior velocities, as unknowns. The involved boundary and volume integrals employed
in the discretization of the kinematics integral equations are the following

H ūx
Γs

=

∫
Γux

s

∂u∗

∂n
ūx dΓ (29)

H
ūy

Γs
=

∫
Γ

uy
s

∂u∗

∂n
ūy dΓ (30)

Hk
Γs

=

∫
Γs

∂u∗

∂n
Φ (yk) dΓ (31)

Hk
Ls

=

∫
Ls

∂u∗

∂n
Φ (yk) dΓ (32)

T ūx
Γs

=

∫
Γux

s

∂u∗

∂t
ūx dΓ (33)

T
ūy

Γs
=

∫
Γ

uy
s

∂u∗

∂t
ūy dΓ (34)

T kΓs
=

∫
Γs

∂u∗

∂t
Φ (yk) dΓ (35)

and

Dk
j =

∫
Ωs

∂u∗

∂xj
Φ (yk) dΩ (36)
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3.2 Vorticity transport integral equation

In the discretization of the vorticity transport Eq (22), the integral with the unknown
boundary flux ∂ω

∂n
along the circular arc Ls is elliminated due to the companion solution as

described in many MLPG/LBIE works (see [23], [29], [32] and [33]). By defining the local
boundary portion Γs = Γsq ∪ Γsω where Γsq is the part of the boundary with prescribed
vorticity flux q̄ = ∂ω

∂n
and Γsω is the boundary part with prescribed vorticity, then the

discretized form of the Eq (22) is the following

c (y)ω (y) +

∫
Γsq

∂u∗

∂n
Φ (yk) dΓ [ω](yk) +

∫
Γsω

∂u∗

∂n
ω̄ dΓ +

∫
Ls

∂u∗

∂n
Φ (yk) dΓ [ω](yk) =∫

Γsq

(u∗ − uc) q̄ dΓ +

∫
Γsω

(u∗ − uc) ∂Φ (yk)

∂n
dΓ [ω](yk)−

1

ν

∫
Γsq

(u∗ − uc)unΦ (yk) dΓ− 1

ν

∫
Γsω

(u∗ − uc)unω̄ dΓ+

1

ν

∫
Ωs

∂u∗

∂xj
ujΦ (yk) dΩ [ω](yk) −

1

ν∆t

∫
Ωs

(u∗ − uc) Φ (yk) dΩ [ω](yk) +

1

ν∆t

∫
Ωs

(u∗ − uc) Φ (yk) dΩ [ωt−1](yk) (37)

Since the Radial Basis Functions posseses the delta property and the unknown boundary
vorticity flux is expressed through the derivatives of the RBFs, only for the portions of
the boundary where ∂ω

∂n
is unknown, the above integral equation should be applied only

to the nodal points with unknown vorticity. This leads to a reduction of the system
of equations in the FEM sense. Writing the above equation for every boundary nodal
point with vorticity unknown and for every interior nodal point, the following equation is
obtained, which will be rearranged and assembled to the final kinetics system of equations.
All unknowns are vorticity values.

c (y)ω (y) + K
(
y,yk

)
[ω]yk

= f
(
y,yk

)
(38)

where K is a vector of integrals, that depend on the collocation node y and the neigh-
borhood nodal points yk and has the following form

K
(
y,yk

)
=

∫
Γsq

∂u∗

∂n
Φ (yk) dΓ +

∫
Ls

∂u∗

∂n
Φ (yk) dΓ−∫

Γsω

(u∗ − uc) ∂Φ (yk)

∂n
dΓ +

1

ν

∫
Γsq

(u∗ − uc)unΦ (yk) dΓ−

1

ν

∫
Ωs

∂u∗

∂xj
ujΦ (yk) dΩ +

1

ν∆t

∫
Ωs

(u∗ − uc) Φ (yk) dΩ (39)

or

K
(
y,yk

)
=
[
Hk

Γsq

]
+
[
Hk
L

]
−
[
Gk

Γsω

]
+

1

ν

[
F k
sq

]
− 1

ν

[
Dk
j

] [
ukj
]

+
1

ν∆t

[
Uk
j

]
(40)
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and

f
(
y,yk

)
= −

∫
Γsω

∂u∗

∂n
ω̄ dΓ +

∫
Γsq

(u∗ − uc) q̄ dΓ−

1

ν

∫
Γsω

(u∗ − uc)unω̄ dΓ +
1

ν∆t

∫
Ωs

(u∗ − uc) Φ (yk) dΩ [ωt−1](yk) (41)

or

f
(
y,yk

)
= − [HΓsω ] +

[
GΓsq

]
− 1

ν
[FΓsω ] +

1

ν∆t

[
Uk
] [
ωkt−1

]
(42)

It should be noted that, since the system of equations is reduced for the nodal points
where the vorticity is known, Eq (40) should be rearranged again, and the terms with the
known vorticities should be put to the right hand side. In this way the banded kinetics
system of equations Ax = b is derived. The involved integrals for the transport integral
equation are the following

Hk
L =

∫
Ls

∂u∗

∂n
Φ (yk) dΓ (43)

Hk
Γsq

=

∫
Γsq

∂u∗

∂n
Φ (yk) dΓ (44)

HΓsω =

∫
Γsω

∂u∗

∂n
ω̄ dΓ (45)

GΓsq =

∫
Γsq

(u∗ − uc) q̄ dΓ (46)

Gk
Γsω

=

∫
Γsω

(u∗ − uc) ∂Φ (yk)

∂n
dΓ (47)

F k
Γsq

=
1

ν

∫
Γsq

(u∗ − uc)unΦ (yk) dΓ (48)

FΓsω =
1

ν

∫
Γsω

(u∗ − uc)unω̄ dΓ (49)
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Dk
j =

∫
Ωs

∂u∗

∂xj
Φ (yk) dΩ (50)

and

Uk
j =

∫
Ωs

(u∗ − uc) Φ (yk) dΩ (51)

Attention should be drawn to the evaluation of the convective boundary integral (48), since
the term un = ujnj is defined on the boundary Γsq, and the RBFs involve interior nodes.
In this case, the velocity uj is interpolated by boundary interpolation functions like those
used in the BEM, while the field ω is interpolated with the RBFs and eventually involve
interior neighborhood nodes. Thus the convective boundary integral depends strongly
on the velocity field, and it should be recalculated each time the boundary velocity is
changing. i.e. in outflow regions. It should be noted that by dropping the integrals (51)
in Eqs (40) and (42), the formulation of the static case is derived.

3.3 Solution approach

As it was already mentioned, two systems of equations should be solved in every itera-
tion step. One system is related to the kinematics and the other to the kinetics transport
equation. The local nature of the meshless methods is a very important characteristic,
since it produces sparse systems of equations. Moreover, with the optimum positioning of
the coefficients, the systems can be stored in band form [5]. This storage is very efficient,
because the computer memory requirements are relatively small and the solution process
is very fast due to the fact that the matrix is a narrow band around the main diagonal.
The time domain solution approach is the following.

• Discretize the domain to a number of boundary and interior nodal points. Evaluate
connectivity and for every nodal point invert the local RBF matrix [24], [25].

• Start the time domain loop.

• Initialize the vorticity field.

• Evaluate integrals (29) - (36) and (43)- (51) except (48) for outflow regions.

• Start the iteration loop.

– Form kinetics system of equations (24), (26), (28) and solve it for boundary
vorticities or velocity components and interior velocities.

– Evaluate convective boundary integral for outflow regions (48).

– Solve the transport equation for boundary and interior vorticities (38).

– Check convergence of the vorticity field and quit the iteration loop if it is
achieved.

12
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– Relax vorticities and proceed to the next iteration step.

• End of iteration loop.

• End of time domain loop.

The initialization of the vorticity field is important for the solution approach. A good
initial value reduces significantly the number of the iteration steps. In the examples the
initial value for every time step is the vorticity field of the previous time step, and for the
very first time step was equal to zero. The relaxation of the vorticity field is based on the
following formula

ωi+1 = λωi + (1− λ)ωi−1 (52)

where 0 < λ ≤ 1 is the relaxation parameter and i denotes the iteration step. This
parameter is quite important in the solution process. A very large relaxation parameter
can affect the convergence negatively. On the other hand if it is too small it can cause
too many iteration steps.
The convergence norm of the problem is computed by the following formula

e =

∑N
j=1

(
ωij − ωi−1

j

)2∑N
j=1

(
ωij
)2 (53)

where the index i denotes the iteration step and j denotes the nodal point.

4 NUMERICAL EXAMPLE

This example concerns the well known lid driven cavity flow, widely used as a bench-
mark for incompressible flow codes. The fluid is contained in a squared unit cavity where
the upper wall moves with a constant velocity ūx = 1 causing flow rotation (Fig. 2).
Despite the simple geometry, driven cavity flows exhibit a variety of flow phenomena re-
lated to multiple counter rotating recirculations near the corners and singular solutions
in the upper corners, both depending on the Reynolds number. The problem is solved
with the proposed formulation for Reynolds number, Re = 5000. By taking into account
the definition of the Reynolds number Re = uxL/(ν) the viscosity coefficient ν is equal
to 0.0002. The convergence tolerance is equal to 10−6 and the time step is 0.5 sec. The
problem is studied for the timeframe of 60 seconds. The cavity is discretized with 35x35
cells, givng a total of 8285 nodes. The results obtained with the present formulation are
depicted in Figs (3), (4), (5) (6). They are in good agreement with the results obtained
by Ghia et al [7] showing the validation of the present method.

5 CONCLUSIONS

A meshless Local Boundary Integral Equation method for solving the two dimensional
Navier-Stokes equations has been proposed. The main attractive features of the proposed
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L = 1

L = 1

ūx

Figure 2: Lid driven cavity L × L.

Figure 3: Profile of the velocity component ux along a vertical line through the center of the cavity.
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Figure 4: Profile of the velocity component uy along a horizontal line through the center of the cavity.

Figure 5: Lid-driven cavity flow, vorticity on the top wall
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Figure 6: Lid-driven cavity flow, vorticity distribution (Re=5000)

methodology are the following:
- The unknown field is interpolated by the Radial Basis Functions, which posses the
delta property, and the inversion of their matrix, is computed only once for every nodal
point. This fact leads to a serious speed up in the computation of integrals.
- The derivatives of the Radial Basis Functions are used only in the transport equation
for the boundaries with the unknown vorticity flux, leading to a very stable and accurate
numerical scheme. The nodal points with prescribed vorticity are eliminated from the
system of equations like in FEM.
- Every nodal point is connected with very few nodal points around it, leading to a
banded system with very narrow bandwidth.
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