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Abstract. Partially Averaged Navier-Stokes (PANS) is a recently developed method for
computing turbulent flows. It is purported for smooth bridging between RANS and DNS.
Unlike current practice in Large-eddy simulations (LES), PANS entails solving evolution
equations for unresolved kinetic energy (Ku) and unresolved dissipation (εu). One of
the most important unclosed terms in PANS is the turbulent transport of Ku and εu.
In this paper, we seek to develop suitable turbulent transport closure models by detailed
comparison with numerical and experimental data on benchmark flows. For this purpose,
PANS calculations have been performed for a three-dimensional lid-driven cavity flow at
Reynolds Number (Re)=10,000 and a three-dimensional circular cylinder at a Reynolds
number of (Re)=140,000. The model assessment is based on performance in the following
categories:- on (i) mean flow profiles; (ii) resolved flow structure; and (iii) the unresolved-
to-resolved kinetic energy (fk) recovery. We further seek to reaffirm the suitability of
PANS as an effective bridging model between RANS and DNS.
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1 INTRODUCTION

One current trend in simulating turbulent flows is the increasing use of seamless bridg-
ing methods and zonal hybrid approaches for a variety of practical applications. In the
hybrid approach, the modeling challenge is to identify an appropriate criterion for trans-
ferring computation from one model to the other while retaining the physical fidelity
intact. Due to its very nature, seamless bridging methods do not encounter these difficul-
ties. The closure modeling challenges in the bridging approaches are more similar to that
of RANS (Reynolds-averaged Navier-Stokes method). In this paper we will address the
turbulent transport modeling of the unresolved kinetic energy and dissipation by unre-
solved fluctuating scales of motion. Although the model development is in the context of
the Partially-averaged Navier-Stokes (PANS: Girimaji, 2006; Girimaji, et al, 2006)1,2, the
methodology and even closure expression should be suitable for all bridging strategies.
Partially-averaged Navier-Stokes (PANS) method is a recently proposed turbulence clo-
sure approach, purported for smooth bridging between RANS (Reynolds-averaged Navier-
Stokes equations) and DNS (Direct Numerical Simulation).1 PANS involves solving evo-
lution equations for unresolved kinetic energy (Ku) and unresolved dissipation (εu). Two
of the most important terms that require closure are the turbulent transport of Ku and
εu. The primary purpose of this study is to develop suitable turbulent transport closure
models by detailed comparison with experimental and numerical data of Jordan et al3.
In this regard, PANS calculations have been performed for a three-dimensional lid-driven
cavity flow at a Reynolds number (Re = 10, 000) and a three dimensional circular cylinder
at a Reynolds number (Re = 140, 000).

Consideration of flow inside a lid-driven cavity for the purpose of turbulent trans-
port development is motivated by three major factors. First, the problem formulation
is straight-forward: the geometry is regular and the boundary conditions are well-posed.
Second, the lid-driven cavity flow offers the opportunity to study ”stationary captive”
primary vortices as well as a number of complex secondary phenomena such as the corner
vortices and the Taylor-Goertler vortices.4 As will be shown, turbulent transport models
play a crucial role in the resolution of these vortices. Third, the flow is a typical rep-
resentation of several engineering situations, such as flow over cutouts, slots on walls of
heat exchangers, the mixing container of chemical plants etc. Recently, cavity flows have
received much attention in acoustics and flame-holding applications.

The flow over a bluff body, such as a 3D cylinder, is also an excellent test bed to de-
velop the transport models. First, there are significant complexities to the flow for which
substantial experimental data is available to be used for validation. At this Reynolds
number, the flow is considered to be in the sub-critical range. Separation of the flow is
laminar and transition to turbulence occurs in the free shear layer in the wake. Second,
for the cylinder flow, it is straightforward to determine the ratio of unresolved-to-resolved
kinetic energy, or fk, recovery. The purpose of examining fk recovery is to determine
the consistency of the simulation with user-defined inputs. The details of fk recovery are
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discussed in a subsequent section.

1.1 Experimental and numerical data

On the experimental front, the lid-driven cavity flow has been investigated by a number
of researchers: Koseff et. al,5 Pan et. al6 and Mills.7 In a series of insightful papers, Koseff
and Street,5,8,9 present the results from their elaborate measurements to establish the
essential features of fully-developed three-dimensional flows in a driven cavity. Flows at
several span-to-width ratios (spanwise aspect ratio) were studied. The main observation
that emerged from their experiments was that the flows exhibit inherent three-dimensional
features with significant transverse motions, the Taylor-Goertler-like (TGL) vortices and
end-wall vortices. The visualization studies of Aidun et. al10 on transition in a cavity
of square cross-section but with a spanwise extent three times its height, concluded that
this flow becomes unsteady at a Reynolds number of approximately 825 and that the size
and number of pairs of TGL vortices depend strongly on the Reynolds number and the
Spanwise-Aspect Ratio (SAR).

Numerical investigations carried out by Jordan et. al,3 include a Direct Numerical
Simulation (DNS) at Re = 5000 and a Large Eddy Simulation (LES) at Re = 10, 000, for
a SAR of 3 : 1 : 1. At Re = 5000, the flow was laminar, in which the three-dimensionality
and unsteadiness of the flow resulted in severe distortion of the basic flow structure. Rapid
changes in the size of the TGL vortices were noticed and they were shown to meander
along the cavity bottom. At higher Reynolds numbers, the vortices themselves became
distorted due to the onset of turbulence. Other published results from three-dimensional
simulations includes those of Kim et. al,11 Frietas et. al,12 and Prasad et. al13 where
the Reynolds number was restricted to low to moderate values (Re ≤ 3200). In these
works, the simulations showed the appearance of quasi-steady and unsteady spanwise
TGL vortices along the cavity bottom, which had been observed experimentally.

The flow over a circular cylinder has been well investigated both experimentally and
numerically. A high reynolds number experiment was performed by Roshko.14 Cantwell &
Coles15 performed an experiment for this flow at Re = 140, 000. At this Reynolds number
the flow is considered to be in the sub-critical range. The flow is still laminar when it
separates and transition to turbulence occurs in the free shear layer in the wake. This
behavior adds significant complexities to the flow. A Reynolds number of 2×105-3.5×106

is in the critical range. A Reynolds number that is larger than this range is considered
to be super-critical. At super-critical Reynolds numbers, the flow turns turbulent prior
to separation. The flow stays attached for a longer distance as the turbulent boundary
layer is more energetic. Numerical investigations for Re = 140, 000 include a Detached
Eddy Simulation performed by Travin et. al16 and a Large Eddy Simulation conducted
by Breuer.17 A more detailed literature review can be found in Lakshmipathy18 covering
a range of Reynolds numbers for the cylinder flow problem.

The main objectives of this paper are to develop turbulent transport models for un-
resolved kinetic energy and dissipation and to perform extensive simulations of three-
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dimensional cavity flow and circular cylinder flow for the purpose of transport model
validation. The PANS calculations will be compared against LES and experiments when-
ever possible. We address the following issues:

(i) The effect of turbulent transport models on mean flow profiles.

(ii) The effect of turbulent transport models on resolved flow structure for the lid cavity.
As mentioned earlier, it is the presence of primary ’captive vortices’, secondary
corner and TGL vortices that make the cavity flow an ideal test bed for testing
turbulent transport models.

(iii) The effect of turbulent transport model on fk recovery.

The numerical simulations using PANS is performed for Re = 10, 000, for a spanwise
aspect ratio (SAR = 2L/W ) of 3 : 1 : 1 for the cavity flow. Simulations have also been
performed for other spanwise-aspect ratios such as 0.5 : 1 : 1 and 1 : 1 : 1, but the the
results are presented only for the 3 : 1 : 1 case in this paper. The numerical simulation
for the cylinder was performed at a Reynolds number of a 140,000.

2 PANS TURBULENCE MODEL

The PANS method used in the current study, has been developed for resolving a por-
tion of the large, unsteady scales of motion (”partial averaging”) by making use of the
averaging invariance property of the governing equations.19 In PANS, as in LES, the to-
tal field is decomposed into resolved and unresolved parts. PANS, however, is distinctly
different from LES in three main aspects: (i) the decomposition is based on the fractions
(fk, fε) of kinetic energy and dissipation (Ku, εu) to be modeled and not on the cut-off
wavenumber, (ii) PANS filtering (or averaging) is implied rather than explicit and no
filtering is performed, and (iii) the SFS (sub-filter scale) stress (τ(Vi, Vj)) is independent
of the grid size (∆): i.e. the level of physical resolution achievable depends wholly, upon
the prescription of fk and fε and hence is independent of the numerical resolution.
The PANS method is described in detail in Girimaji1 and the salient features are given
below. Starting from the instantaneous incompressible flow equations,

∂Vi
∂t

+ Vj
∂Vi
∂xj

= − ∂p

∂xi
+ ν

∂2Vi
∂xj∂xj

(1)

∂Vi
∂xi

= 0;

〈〉 a general/arbitrary filtering operator is defined, that is constant preserving and com-
mutes with spatial and temporal differentiation.1 The instantaneous field can then be
decomposed into a filtered field and a residual field:

Vi = Ui + ui (2)
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where Ui = 〈Vi〉, corresponds to the filtered field and ui corresponds to the field that needs
to be modeled. On applying such a filtering operator to the instantaneous equations and
invoking continuity we get

∂〈Vi〉
∂t

+ 〈Vj
∂Vi
∂xj
〉 =

∂〈Vi〉
∂t

+ 〈Vj〉
∂Vi
∂xj

(3)

+
∂τ(Vi, Vj)

∂xj

In the above equation τ(Vi, Vj) = (〈ViVj〉 − 〈Vi〉〈Vj〉), is the generalized central moment
as defined by Germano.19 The PANS equation for Ui is then

∂Ui
∂t

+ Uj
∂Ui
∂xj

+
∂τ(Vi, Vj)

∂xj
= −∂〈p〉

∂xi
+ ν

∂2〈Vi〉
∂xj∂xj

(4)

= −∂〈pu〉
∂xi

+ ν
∂2Ui
∂xj∂xj

The pressure field is obtained from

∇2〈p〉 = −∂Ui
∂xj

∂Uj
∂xi

(5)

Equation (4) is unclosed due to the presence of the sub-filter scale (SFS) stress term
τ(Vi, Vj). The evolution equation for the SFS stress is similar in form to its RANS
counterpart:

∂τ(Vi, Vj)

∂t
+ Uk

∂τ(Vi, Vj)

∂xk
= Pij + φij −Dij + Tij (6)

where

Pij = −τ(Vi, Vj)
∂Uj
∂xk
− τ(Vj, Vk)

∂Ui
∂xk

; (7)

φij = 2τ(p
′
, Sij); Sij =

1

2

(
∂〈Ui〉
∂xj

+
∂〈Uj〉
∂xi

)
Dij = 2ντ(

∂Ui
∂xk

,
∂Uj
∂xk

);

Tij = − ∂

∂xk

(
τ(Vi, Vj, Vk) + τ(p, Vj)δik

−ν ∂τ(Vi, Vj)

∂xk

)
are the terms for production, pressure-strain correlation, dissipation and transport of SFS
stresses respectively. In the above, p

′
is the pressure field corresponding to unresolved

fluctuations:

∇2p
′
= −2

∂Ui
∂xj

∂uj
∂xi
− ∂ui
∂xj

∂uj
∂xi

(8)
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From equation (6), we observe that its form is invariant to the type of filter and conse-
quently, the SFS stress model form must be invariant to the type of averaging, provided
the generalized central moments are used.19 Based on these arguments, PANS is capable
of inheriting its model form from either RANS or LES. However, since most current sub-
grid LES closures are zero-equation models, they are too elementary to be used as a basis
for PANS.

In PANS, the extent of filtering is quantified by specifying the ratios of unresolved
kinetic energy and dissipation1

fk =
Ku

K
fε =

εu
ε
. (9)

In the above equation K and ε are the total kinetic energy and dissipation.

2.1 RANS-type sub-filter stress closure

A Boussinesq-type approximation or mixing-length arguments can be used for partial
fields as well.1 The SFS stress term τ(Vi, Vj) can be chosen in equation (6) according to

τ(Vi, Vj) = −νu
(
∂Ui
∂xj

+
∂Uj
∂xi

)
+

2

3
Kuδij (10)

where νu = Cµ
K2

u

εu
. From the above equation, it is observed that in order to completely

close the SFS stress term, suitable models for Ku and εu have to be prescribed. In
Girimaji1 the starting point for this development is the RANS two-equation K− ε model:

∂K

∂t
+ Uj

∂K

∂xj
= P − ε+

∂

∂xj

(
νt
σk

∂K

∂xj

)
(11)

∂ε

∂t
+ Uj

∂ε

∂xj
= Cε1

Pε

K
− Cε2

ε2

K

+
∂

∂xj

(
νt
σε

∂ε

∂xj

)

where U is the mean velocity, P is the production of kinetic energy, ε is the dissipation-
rate, νt is the total turbulent viscosity (νt = Cµ

K2

ε
) and Cε1, Cε2 are model coefficients.

The model equations for Ku and εu are derived by considering the following require-
ments:

(i) The ratios of unresolved to total kinetic energy and dissipation must be equal to fk
and fε respectively.

(ii) PANS must reduce to RANS as fk and fε tend to unity.

(iii) PANS must reduce to DNS as fk and fε tend to zero.
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In summary, fk and fε serve as resolution control parameters for obtaining the desired
level of resolution. Based on the above requirements, the model equation for Ku is derived
by Girimaji1

∂Ku

∂t
+ Uj

∂Ku

∂xj
= Pu − εu +

∂

∂xj

(
νt
σk

∂Ku

∂xj

)
(12)

+(Uj − Uj)
∂Ku

∂xj

where Pu = τ(Vi, Vj)
∂Ui

∂xj
corresponds to unresolved production, εu the unresolved dissipa-

tion and Tku the transport of unresolved kinetic energy. The above equation is identical
to the equation for kinetic energy K, but for the additional transport term involving
convection of unresolved energy by resolved fluctuations (Uj − Uj).
The model equation for εu is developed in a similar fashion by requiring that

dεu
dt

= fε
dε

dt
(13)

which leads to

∂εu
∂t

+ Uj
∂εu
∂xj

= Cε1
Puεu
Ku

−
(
Cε1 +

fk
fε

(Cε2 − Cε1)
)
ε2u
Ku

(14)

+
∂

∂xj

(
νt
σε

∂εu
∂xj

)
+ (Uj − Uj)

∂εu
∂xj

Finally, the two-equation PANS model can be summarized as follows:

∂Ku

∂t
+ Uj

∂Ku

∂xj
= Pu − εu + Tku (15)

∂εu
∂t

+ Uj
∂εu
∂xj

= Cε1
Puεu
Ku

− C∗ε2
ε2u
Ku

+ Tεu

where

C∗ε2 =
(
Cε1 +

fk
fε

(Cε2 − Cε1)
)

(16)

and Cε1 and Cε2 are the standard K − ε model constants. The two terms for turbulent
transport of unresolved quantities TKu and Tεu are expressed as

Tku =
∂

∂xj

(
νt
σk

∂Ku

∂xj

)
+ (Uj − Uj)

∂Ku

∂xj
(17)

=
∂

∂xj

(
νt
σk

∂Ku

∂xj

)
+Dku

Tεu =
∂

∂xj

(
νt
σε

∂εu
∂xj

)
+ (Uj − Uj)

∂εu
∂xj

=
∂

∂xj

(
νt
σε

∂εu
∂xj

)
+Dεu
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where Dku and Dεu represent the transport of kinetic energy and dissipation by resolved-
scale fluctuations. From the above equations it is observed that the only terms that
require further closure are these transport terms.

3 TURBULENT TRANSPORT MODELS

The physics of Tku can be understood as follows. The first term is in equation (17) is
the RANS turbulent transport which represents the transport of Ku by all fluctuations. In
PANS, the transport due to the resolved fluctuations (Uj −Uj) is already included in the
advection term. Therefore, in PANS only the transport due to unresolved fluctuations
should appear in the turbulent transport term. Hence, the PANS turbulent transport
(Tku) must be surmised by subtracting the transport due to resolved scales (Dku) from

the total transport due to all scales
(

∂
∂xj

(
νt
σk

∂Ku

∂xj

))
. A similar explanation is valid for the

PANS turbulent transport of εu as well.
The equations for Tku and Tεu i.e. (17), can be written fully in terms of PANS variables

as

Tku =
∂

∂xj

(
νt
σk

∂Ku

∂xj

)
− (Uj − Uj)

∂Ku

∂xj
(18)

=
∂

∂xj

(
νufε
σkf 2

k

∂Ku

∂xj

)
−Dku

Tεu =
∂

∂xj

(
νt
σε

∂εu
∂xj

)
− (Uj − Uj)

∂εu
∂xj

=
∂

∂xj

(
νufε
σεf 2

k

∂εu
∂xj

)
−Dεu

as the RANS and PANS eddy viscosities are related according to

νu = Cµ
K2
u

εu
= Cµ

f 2
k

fε

K2

ε
=
f 2
k

fε
νt (19)

It is clear that modeling of Tku and Tεu reduces to modeling Dku and Dεu . We propose
that this transport should be amenable to gradient transport modeling. We now inves-
tigate two possible gradient transport models: the Zero-transport model (ZTM) and the
Maximum transport model (MTM).

Zero-transport Model: In this model, it is assumed that resolved fluctuations (Uj−Uj)
do not contribute to the net transport of the quantity in question.

Dq ≡ (Uj − Uj)
∂q

∂xj
≈ 0 (20)
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where q is any quantity of interest; Ku or εu. If ZTM is invoked for Ku or εu we will have

Tku =
∂

∂xj

(
νufε
σkf 2

k

∂Ku

∂xj

)
=

∂

∂xj

(
νu
σku

∂Ku

∂xj

)
(21)

Tεu =
∂

∂xj

(
νufε
σεf 2

k

∂εu
∂xj

)
=

∂

∂xj

(
νu
σεu

∂εu
∂xj

)

with the unresolved Prandtl numbers defined as

σku ≡
f 2
k

fε
σk (22)

σεu ≡
f 2
k

fε
σε

Maximum transport model:- In this model it is assumed that the resolved fluctuation
do contribute to net transport. The effective viscosity of this transport is taken to be the
difference between total eddy viscosity and the unresolved eddy viscosity:

νr = νt − νu = Cµ
K2

ε
− Cµ

K2
u

εu
(23)

If this assumption is invoked we will have

(Uj − Uj)Ku =
(
νr
σk

∂Ku

∂xj

)
=

(
(νt − νu)

σk

∂Ku

∂xj

)
, (24)

(Uj − Uj)εu =
(
νr
σk

∂εu
∂xj

)
=

(
(νt − νu)

σk

∂εu
∂xj

)
.

Then the expressions for transport quantities Dku and Dεu are

Dku =
∂

∂xj
(Uj − Uj)Ku =

∂

∂xj

(
νr
σk

∂Ku

∂xj

)
(25)

=
∂

∂xj

(
(νt − νu)

σk

∂Ku

∂xj

)

Dεu =
∂

∂xj
(Uj − Uj)εu =

∂

∂xj

(
νr
σε

∂εu
∂xj

)

=
∂

∂xj

(
(νt − νu)

σε

∂εu
∂xj

)

9
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Upon substituting the above results into equation (18) we get

Tku =
∂

∂xj

(
νt
σk

∂Ku

∂xj

)
− ∂

∂xj

(
(νt − νu)

σk

∂Ku

∂xj

)
(26)

=
∂

∂xj

(
νu
σk

∂Ku

∂xj

)
=

∂

∂xj

(
νu
σku

∂Ku

∂xj

)

and

Tεu =
∂

∂xj

(
νt
σε

∂εu
∂xj

)
− ∂

∂xj

(
(νt − νu)

σε

∂εu
∂xj

)
(27)

=
∂

∂xj

(
νu
σε

∂εu
∂xj

)
=

∂

∂xj

(
νu
σεu

∂εu
∂xj

)

with the modified Prandtl numbers defined as

σku ≡ σk (28)

σεu ≡ σε.

A priori assessment of models:- Preliminary evaluation of the two models can be per-
formed with simple mixing length arguments such as described in Tennekes and Lumley20.
The net transport of a quantity (q) by a velocity field depends on the length scales of
the two fields. If the length-scales of the q and (U −U) fields are very different, then the
net transport will be small due to lack of correlation between the two fields. Conversely,
the most efficient transport occurs when the transported quantity and the transporting
velocity field are of similar length scales.

In the current case, three length scales are of interest: L− integral length scale of tur-
bulence; η− the Kolmogorov length scale; and lc− the implied PANS cut-off scale. The
range of scales in the various fields are

(i) Length-scale of (Uj − Uj) ∼ (L, lc)

(ii) Length-scale of Ku ∼ (lc, η)

(iii) Length-scale of εu fields ∼ η.

Clearly L > lc > η.
Since there is no overlap between the length-scales of (U − U) and εu, we expect the

ZTM to be more appropriate: Dεu ≈ 0. Since there is some overlap between the velocity
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and the Ku scales (in the proximity of lc), we expect some net transport. Hence ZTM
or MTM maybe appropriate for unresolved kinetic energy Ku. Our objective is to assess
these models in the 3-D lid-driven cavity flow and flow past a circular cylinder. However,
at small Reynolds numbers there may not be a big demarcation between the scales and
MTM may be more appropriate.

4 COMPUTATIONAL ISSUES

The FLUENT flow solver has been used to perform the PANS calculations for the
cavity and cylinder flows. It is important to note that FLUENT is originally intended
for RANS. However, PANS calculations are made by suitably changing the values of the
model coefficient Cε2 and Prandtl numbers σk and σε.

The cavity geometry considered has a spanwise aspect ratio (SAR) of 3:1:1, for which
qualitative as well as quantitative data are available for comparison.3 The width(W) and
the height(H) are taken to be 1.0, in both x and y directions and the span(L) is taken to be
1.5 in the z-direction. One boundary of the span (L) is treated as the plane of symmetry
(z=0.0) and the other as a solid end-wall. The symmetry condition was used as it yielded
accurate statistics at half the computational expense of a full geometry simulation. The
LES data in Jordan et. al3 that have been used for current model comparisons, has also
been generated by utilizing this condition. The lid (top wall) is prescribed a velocity(U)
of 1 m/s in the horizontal direction. Simulations are performed for a Reynolds number
of 10,000. Sampling for statistics is not enabled until ten cycles (corresponding to 60
seconds of flow time) are completed in order for the flow to become fully-developed. The
grid sizes used for the simulations for different fk values are shown in Table I.

fk Grid Sizes
1 0.2 95x95x95
2 0.4 81x81x81
3 0.5 75x75x75
4 0.7 64x64x64
5 1.0 51x51x51

Table 1: Grid sizes for various fk calculations

For the cylinder calculation, the length of the width and height are 15d and the span is
2d, where d is the diameter of the cylinder. The grid size is 320 x 240 x 32. The fk values
tested for the cylinder are 0.4 and 0.6. In previous work, grid and temporal refinement
studies were performed with PANS for the cylinder flow problem at a Reynolds number
of 140,000 with the same dimensions of the domain studied here. The grid refinement
study showed that the results did not change for grids finer than 140 x 120 x 32. It is
assumed that the grid used in this simulation is sufficient for fk values of 0.4 and 0.6,
since it is significantly finer than the one found to be appropriate for a PANS simulation
performed at fk = 0.5. Similarly, a temporal refinement study was performed for this
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cylinder problem. It was found that a δt value of 0.0525 was sufficient for both fk values.
Using the previous argument, the δt must be decreased for a fk value of 0.4. In all the
simulations a time step of 0.025 is used.18 Sampling for mean statistics was enabled after
10,000 iterations which corresponded to a flow time of 100 seconds. In all the computations
for the lid cavity and cylinder we use fε = 1.

5 RESULTS AND DISCUSSION

In this section, the results of simulations conducted using the Zero-transport (ZTM)
and the Maximum transport (MTM) models are presented. Comparisons with data for
the lid cavity2 and circular cylinder14 are made to assess model performances. The plots
for statistical quantities along cavity centerlines have been generated by sampling every
6.5 seconds, after statistical steady state is reached. Statistical sampling for the cylinder
is taken after steady state behavior has been achieved in the flow and then sampling is
taken every second for 100 seconds. Results have been presented for fk values of 1.0
(RANS), 0.7, 0.4 and 0.2 for the cavity flow. The cylinder results include fk values of 1.0,
0.6 and 0.4.

It is important to ensure that the transport model preserves the desired level of resolu-
tion. This will be accomplished by comparing the ratio of the PANS turbulent viscosity at
each point in the domain to that of the RANS turbulent viscosity at that same point. The
pdf of this plot will show how much of the flow is actually consistent with the specified
fk value. The ratio of the turbulent viscosity is the following:

νu
νt

=
f 2
k

fε
(29)

5.1 Mean flow profiles

The first set of figures show mean velocity comparisons of the two transport models
along with LES and experiment data of the cavity flow. In figures 1a and 1b, the mean
U and V velocity profiles obtained from RANS, LES and experiment are shown. It is
evident that RANS performance is inferior to that of LES and experiments. Figures 2a
(Mean U velocity) and 2b (Mean V velocity) present comparisons of PANS-MTM with
RANS, LES and experiment for fk values - 0.2, 0.4 and 0.7. It is observed that MTM per-
forms better than RANS and shows better convergence towards LES (and experiment),
with fk = 0.2 being most accurate in its predictions. The next set of figures 3a and 3b
show comparisons of PANS-ZTM with RANS, LES and experiments. ZTM also shows
very good agreement with data, and the fk = 0.2 case is nearly as accurate as LES. Upon
comparing figures 2 and 3, it is observed that ZTM is closer with LES and experiment
than MTM for corresponding values of fk. This trend is especially evident near the cavity
boundaries as seen in the figures.
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Figure 1: Mean V-Velocity profiles, RANS vs LES and experiment
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Figure 2: Mean V-Velocity profiles, MTM
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Figure 3: Mean V-Velocity profiles, ZTM

For the circular cylinder, the ZTM simulations do not accurately capture the mean
x-velocity profile of the near wake region at x/D=1.0, as shown in figure 4a. It also
appears that the RANS simulation performs slightly better in the region directly aft of
the cylinder. The PANS simulations do provide significant improvement over the RANS
simulation in capturing this profile in the near wake region at x/D = 3 seen in figure 5a
and at the wake centerline seen in figure 6a. From these observations, it can be concluded
that the PANS simulations performs better in the far wake region than they do in the
near wake region. Also, another important observation is that there is not a distinct dif-
ference between the ability of the PANS fk = 0.4 and fk = 0.6 simulations to capture the
mean statistics. In other words, the physics of circular cylinder flow can be captured with
the fk = 0.6 resolution at nearly the same quality of agreement as the fk = 0.4 simulation.

In the MTM simulations for the cylinder flow, there is little difference between RANS
simulation of fk = 1 and the PANS simulations of fk = 0.4 and 0.6 for capturing the
mean statistics in the near wake region at x/D=1.0 seen in figure 4b. In this near wake
region, when utilizing MTM, it can be concluded that the PANS simulations behave like
RANS. The poor results shown with MTM are expected because in the near wake region
the Reynolds number is higher and ZTM should be more appropriate. Further in the
wake, the Reynolds number decreases and the MTM model should provide more accurate
results. Improvement in capturing experimental results using MTM is indeed seen in the
plots of the near wake region at x/D=3.0 (figure 5b) and at the wake centerline (figure
6b). In figure 8b, the fk = 0.4 and fk = 0.6 show vast improvement over the RANS case.
The fk = 0.4 case shows the best recovery. The PANS simulations also show improvement
over the RANS case in capturing the mean velocity profile at the wake centerline as can
be seen in figure 6c.

14



A. Murthi, D. A. Reyes, S.S. Girimaji and B. Basara

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Centerline Mean U−Velocity profiles−−ZTM at x/D = 1

y/D

M
ea

n 
U

−
V

el
oc

ity

 

 

Exp. (Cantwell,1983)
RANS
f
k
=0.4

f
k
=0.6

(a) ZTM

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Centerline Mean U−Velocity profiles−−MTM at x/D = 1

y/D

M
ea

n 
U

−
V

el
oc

ity

 

 

Exp. (Cantwell,1983)
RANS
f
k
=0.4

f
k
=0.6

(b) MTM

Figure 4: Mean U-Velocity profiles at x/D=1
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Figure 5: Mean U-Velocity profiles at x/D=3
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Figure 6: Mean U-Velocity profiles in wake

5.2 Resolved flow structure

Figures 7 and 8 display contours of X-vorticity according to MTM and ZTM, for
fk = 0.7 and 0.4. Figures 7a and 7b (fk = 0.7) show considerably more scales of flow are
resolved by ZTM when compared to MTM, in terms of appearance of Taylor Goertler-like
(TGL) vortex pairs. About three pairs of TGL vortices are observed for ZTM while only
one pair can be seen for MTM. As the value of fk is reduced, more and more pairs of
vortices are uncovered and the number of flow features resolved by ZTM is considerably
more than that for MTM, for a given fk. Specifically, 5 pairs of TGL vortices are observed
for ZTM (Figure 8a) as against 3 pairs for MTM (Figure 8b), for fk = 0.4. Overall, the
ZTM results are in better qualitative agreement than MTM calculations.
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(a) ZTM (b) MTM

Figure 7: X-Vorticity contours along downstream wall, fk = 0.7

(a) ZTM (b) MTM

Figure 8: X-Vorticity contours along downstream wall, fk = 0.4

5.3 fk recovery

The purpose of performing this study is to determine if the PANS simulation is self-
consistent with the specified fk value. As shown in Lakshmipathy and Girimaji this
represents a key step in validating the closure models used in PANS.21 For the fk values
of 0.4 and 0.6, the pdf of the viscosity ratio should peak at 0.16 and 0.36, respectively, as
the ratio is proportional to f 2

k . The MTM does not show good recovery of the specified
viscosity ratio and fails the internal validation test. The conclusion from this study of the
ZTM and MTM approaches is summarized as follows. The ZTM model is more accurate
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for this problem at this Reynolds number because it preserves internal consistency and
provides reasonably accurate results in the near wake region.22
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Figure 9: fk Recovery

6 CONCLUSIONS AND SUMMARY

In the present study, a detailed numerical investigation of the three-dimensional lid-
driven cavity flow and circular cylinder flow are carried out using a new turbulence mod-
eling technique, know as the Partially Averaged Navier-Stokes method or PANS. Flow
studies have been conducted at Re = 10, 000 on a three-dimensional lid-driven cavity for
a spanwise aspect ratio (SAR) of 3:1:1, with the top surface imparted with a constant
velocity of 1 m/s. The circular cylinder flow studies are performed for a Re = 140, 000.
The investigation primarily focuses on the effect of two turbulent transport models: the
Zero-transport model (ZTM) and the Maximum transport model (MTM), on PANS cal-
culations to ascertain which model performs better for Ku and εu.

The main conclusions that can be drawn by observing the lid cavity results are: (i) as
the value of fk is decreased from 1 (RANS) to 0 (DNS) more scales of flow are resolved
in terms of the appearance of flow features, such as the TGL vortices, as evident from
the contour plots of X-vorticity, and (ii) in general, the Zero-transport model appears to
perform better than the Maximum transport model as inferred from the mean velocity
profiles. Specifically, ZTM appears to be better suited for modeling unresolved dissipation
εu, while the both models seem adequate for unresolved kinetic energy Ku.

For the circular cylinder flow, it appears that ZTM is the more appropriate transport
model for this Reynolds number. The performance of MTM is better in the far wake than
in the near wake. The simulation for the ZTM model is consistent with the specified fk
value as reflected in the fk recovery plot. In this context, it seems reasonable to conclude
that PANS is capable of serving as a bridging model between RANS and DNS.
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