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Abstract. In this paper, we solve the discretized steady incompressible Navier-
Stokes equations with preconditioned Krylov methods. Discretization is carried
out with a finite element method. The linearized Navier-Stokes equations give rise
to a saddle point problem due to the absence of pressure in the continuity equation.
We discuss two types of preconditioners: algebraic, based on ILU factorization,
and block preconditioners exploiting the block structure of the coefficient matrix.
We show that both preconditioners give good convergence.

1 Introduction

We consider the basic equations of fluid dynamics and its discretization. We
start with the steady state incompressible Navier-Stokes equations governing the
flow of a Newtonian, incompressible viscous fluid. The equations are given by

−ν∆u + u.∇u + ∇p = f in Ω (1)

∇.u = 0 in Ω. (2)

Ω ⊂ Rd(d = 2 or 3) is the flow domain with piecewise smooth boundary ∂Ω,
u is the fluid velocity, p is the pressure field, ν > 0 is the kinematic viscosity
coefficient (inversely proportional to the Reynolds number, Re), ∆ is the Laplace
operator, ∇ denotes the gradient and ∇. is the divergence operator.

Equation (1) represents conservation of momentum, while Equation (2) repre-
sents the incompressibility condition, or mass conservation. The boundary value
problem that is considered is the system (1), (2), together with boundary condi-
tions on ∂Ω = ∂ΩD ∪ ∂ΩN given by

u = w on ∂ΩD, ν
∂u

∂n
− np = s on ∂ΩN .

The presence of the convective term u.∇u in the momentum equation makes the
Navier-Stokes system nonlinear. It can be linearized with, for example, Picard
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or Newton’s method. We use a finite element discretization with elements that
satisfy the Ladyshenskaya-Babuska-Brezzi (LBB) condition. The linear equations
in matrix form can be written as:

[

F BT

B 0

] [

u

p

]

=

[

f

0

]

, (3)

where F ∈ R
n×n is the discretized convection-diffusion operator, B ∈ R

m×n is the
discretized divergence operator and m ≤ n. The number of velocity unknowns
is n and the number of pressure unknowns is m. The system matrix is sparse,
symmetric indefinite in the case of the Stokes problem and unsymmetric indefi-
nite in the Navier-Stokes problem.

To solve linear system (3), Krylov subspace methods with a suitable precondition-
ing technique are used. For most applications, convergence of Krylov subspace
methods depends on the spectrum of the coefficient matrix. A preconditioner P

transforms the linear system Ax = b to a preconditioned system P−1Ax = P−1b,
such that P−1y is cheap to compute and P−1A has a favorable spectrum for con-
vergence. In general, preconditioning techniques based on algebraic and physics-
based approaches are widely used. Algebraic type preconditioners are based on
an ILU factorization or an approximate inverse of the coefficient matrix, where
some pivoting or a priori reordering strategies are used to make the preconditioner
stable and effective [4–6,8,10,11,17,22,25]. These preconditioners are known for
their cheap and simple implementation and they require no extra knowledge of
the underlying system.

Algebraic preconditioners applied to the complete system (3) may breakdown
due to zero pivots. This problem can be solved by pivoting, which is in general
very expensive. An alternative is to apply a suitable a-priori renumbering. In
Section 2, we will shortly discuss the saddle point ILU (SILU) preconditioner,
which is based on this strategy.

An alternative approach is the use of block preconditioners based on block fac-
torization of the coefficient matrix. Separate subsystems for velocity and pressure
are solved during each iteration. An important aspect of this approach is a good
approximation of the Schur complement. Examples of such preconditioners can
be found in [2, 3, 12, 13, 16, 24]. The final goal is to develop preconditioners that
give convergence independent of the Reynolds number. Dependence of the num-
ber of nodal points should only be visible in the inner solves. In Section 3, we
treat some block triangular preconditioners based on an approximation of the
Schur complement by a pressure convection-diffusion operator (PCD).
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2 The Saddle point ILU preconditioner (SILU)

The Saddle point ILU preconditioner is based on an incomplete factorization
of the complete coefficient matrix with an a priori renumbering that makes the
preconditioner applicable to saddle point problems [22]. Two kinds of reordering
are introduced for this preconditioner:

1. Renumbering of grid points, that can be accomplished by any renumber-
ing method that gives an optimal profile. Examples are the techniques
described by Sloan [20] and Cuthill McKee [7].

2. Since we are dealing with saddle point problems, zero pivots may arise
during ILU decomposition. An obvious way to avoid this problem is to
renumber the unknowns in the sequence: first all the velocity unknowns
and then the pressure unknowns. We call this p-last ordering. A more
sophisticated reordering of unknowns is the so-called p-last per level re-
ordering. The grid is subdivided into levels, where each level is a connected
set of nodes. Thereafter unknowns are reordered per level, first the velocity
unknowns and then the pressures.

After renumbering, standard ILU decomposition is applied to the reordered co-
efficient matrix A. The sparseness structure is defined as follows:

(LD−1U)i,j 6= 0 for (i, j) ∈ S,

(4)

where S consists of those entries of A that are filled by the standard finite element
assembly procedure. So some elements in the pressure zero block are still part of
S although their corresponding matrix coefficients are zero.

Both p-last and p-last per level avoid breakdown of the ILU preconditioner. The
profile with the p-last ordering is relatively large compared to that of the p-last
per level. Due to the local block reordering, zero pivots become non-zero, during
factorization, and no a posteriori pivoting is required.

In the p-last per level reordering, one has to be careful at the start of this process.
If, for example, the velocities in the first node, are prescribed, we start with a
pressure unknown that gives rise to a zero pivot. Therefore, we always combine
the first few levels, into a new level. If the number of free velocity unknowns
in this new level, is less than the number of pressure unknowns, we also add
the next level to level 1, and if necessary this process is repeated. In practice a
combination of 2 or 3 levels is sufficient. Note that the starting level has always
a small contribution to the global profile [22]. In our experiments, p-last per
level in combination with a suitable renumbering of grid points is used. We have
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observed that p-last per level improves the convergence of the preconditioned
iterative method and avoids the breakdown of ILU. The convergence of the SILU
preconditioner, however, depends on the size of the grid and depends mildly on
the Reynolds number.
In some cases the SILU preconditioner has problems with convergence, especially
in the case of stretched grids. In that case the preconditioner can be improved
by assuming extra fill-in (SILUF). The standard fill-in is defined by considering
all unknowns which are directly coupled by the mesh to a degree of freedom in
a row. In our case the extra fill-in is defined by extending this non-zero pattern
by all degrees of freedom that are also coupled to these neighbors, provided they
are part of the profile of the matrix. Although SILUF requires extra memory, it
helps to reduce computation time, even in the case that SILU works fine.

2.1 Breakdown of LU or ILU factorization

In this section we analyze under which condition the p-last per level strategy
has no breakdown.

In the first level we need at least the same number of unprescribed velocity
degrees of freedom as there are pressure degrees of freedom. Furthermore, the
velocity unknowns should have a nonzero connection to the pressure unknowns.
Experimentally, we have seen that this also holds for the ILU preconditioner.
Consider the nonsymmetric case where we multiply the discretized continuity
equation by a minus sign, hence −Bu = −g. We will prove that the precondi-
tioner exists theoretically for an ILUD (see Definition 2.1) decomposition of this
matrix,

Ans =

[

F BT

−B 0

] [

u

p

]

=

[

f

−g

]

, (5)

in which the off-diagonal elements of L̂ and Û are taken equal to the corre-
sponding elements in Ans. Only the matrix D has to be determined.

Definition 2.1. ILUD:

1. diag(L̂) = diag(Û) = D,

2. li,j = ai,j for i > j and ui,j = ai,j for j > i,

3. (L̂D−1ÛL)i,j = ai,j .

Proposition 2.1. If we use the p-last ordering and assume that the ILUD decom-
position of F exists with positive matrix D then the complete ILUD decomposition
exists because every column of BT contains a nonzero element. Note that if BT

has a zero column then Ans is singular.
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Proof: We apply the ILUD decomposition to (5). We consider the computa-
tion of D:

(L̂D−1Û)i,i = di +

i−1
∑

j=1

li,j · uj,i

dj

= ai,i, (6)

this leads to

di = ai,i −
i−1
∑

j=1

ai,j · aj,i

dj

. (7)

From the assumption it follows that the ILUD decomposition of F exists and
thus dj > 0 for j = 1, ..., n. For i ∈ (n + 1, n + m) we have ai,j = −aj,i and

ai,i = 0. This together with (7) implies that di =
∑i−1

j=1

a2

i,j

dj
. Since the norm of a

column BT is nonzero we have
∑i−1

j=1

a2

i,j

dj
> 0. Combined with dk > 0 for k < i it

follows that

di ≥ ( min
1≤k≤i−1

1

dk

)

i−1
∑

j=1

a2
i,j > 0. (8)

Proposition 2.2. For an arbitrary ordering we suppose that the ILUD decompo-
sition exists for all j < i, where the ith row is related to the continuity equation.
If the ith (pressure) unknown is preceded by at least one velocity unknown with
a nonzero connection to this pressure unknown (so there is one k < i such that
ai,k 6= 0), then the ILUD decomposition exists and di > 0.

Proof: It follows again from (7) that

di >

i−1
∑

j=1

li,j · uj,i

dj

. (9)

Since dj > 0 for j < i and a2
i,k > 0 for at least one k < i we obtain di > 0.

From the above propositions it is clear that the ILUD decomposition gives
positive diagonal elements. If we use the original matrix (symmetric case) the
diagonal elements corresponding to the pressure part appear to be negative. This
is also the case for the ILU decomposition, but we have no theoretical proof.

One could ask oneself if it is possible to apply a standard profile renumbering
scheme based on the matrix itself, like for example Approximate Minimum De-
gree (AMD) [1]. There are several reasons why SILU is better suited than AMD
when applied to the incompressible Navier-Stokes equations.

The first is that SILU is cheaper to compute the reordered matrix. The reason is
that the reordering is applied on grid nodes, and after that the levels are defined.
AMD, on the other hand, is applied to the complete matrix. In the Navier-Stokes
problem, the complete matrix is much larger than the adjacency matrix because
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the number of degrees of freedom per point is larger than one.

The second reason is, if in AMD, the first unknown with minimum degree cor-
responds to a pressure unknown, ILU will break-down, since the first diagonal
element is equal to zero [9].

The main problem is that ordering schemes like AMD are built for SPD matrices
or matrices having nonzero diagonals. In our case, the breakdown criterion is
simple. If at least one velocity unknown is connected to a pressure unknown in
each level, it will not breakdown. So applying AMD type methods for saddle
point problems is somewhat dangerous.

3 Block preconditioners

Block preconditioners for the incompressible Navier-Stokes problem are based
on block LDU decomposition of the coefficient matrix. The factorization can be
written as:

A = LDU =

[

F BT

B 0

]

=

[

I 0
BF−1 I

] [

F 0
0 S

] [

I F−1BT

0 I

]

, (10)

where S = −BF−1BT is the Schur complement matrix. Most preconditioners
are based on a combination of these blocks and a suitable approximation of the
Schur complement matrix. A popular class of preconditioners is the set of block
triangular preconditioners based on the DU decomposition [14], [2]:

Pt =

[

F BT

0 S

]

. (11)

In general, the use of F−1 and S−1 is not practical since the matrices are very
expensive to compute and to store. F−1 is formally approximated by a matrix
F̂−1. Usually, such an approximation consists of a small number of iterations
with an iterative method. S is first approximated and then the system Sz = r is
solved approximately.

In this paper we discuss the pressure convection-diffusion preconditioner (PCD)
that is of block triangular type [16], [19], [14]. The preconditioner is based on
the assumption that a commutator of the convection diffusion operator on the
velocity space (L), multiplied by the gradient operator, on the velocity space, and
the gradient operator, acting on the convection diffusion operator in the pressure
space (Lp), is small.

ε = L∇−∇Lp. (12)

In matrix form, basically we are minimizing the norm:
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∣

∣

∣

∣FBT − BT Fp

∣

∣

∣

∣ , (13)

where Fp is the convection-diffusion operator on pressure space. This gives rise
to a Schur complement approximation of the form:

BF−1BT ≈ BQ−1
u BT F−1

p Qp, (14)

where Qu denotes the velocity mass matrix and Qp the pressure mass matrix.
The expensive part BQ−1

u BT (dense) in (14) is replaced by the pressure Laplacian
matrix, Ap, which is spectrally equivalent to BQ−1

u BT .

S = −BF−1BT ≈ −ApF
−1
p Qp. (15)

The preconditioner has some nice convergence properties. It gives mesh inde-
pendent convergence if the equations are discretized with Q2-Q1 finite elements.
The main issue regarding the effectiveness of this preconditioner are the boundary
conditions of operator Fp. It may happen that the commutator in (13) is small
everywhere except on the boundaries due to the choice of boundary conditions.
The classical ad-hoc choice for boundary conditions for Fp is, Dirichlet boundary
conditions at inflow and homogeneous Neumann boundary conditions at outflow.
The same choice is made for the operator Ap. This choice of boundary conditions
is based on numerical experiments.

Recently it has been discovered, that better boundary conditions for Fp are
possible, resulting in a much better performance of PCD. Instead of (13), one
considers the commutator based on gradient and divergence:

||BF − FpB|| ≈ 0 (16)

The new formulation based on (16) becomes:

S = −BF−1BT ≈ −QpF
−1
p Ap. (17)

It has also been observed that in (16), boundary conditions for Fp are more

important than for Ap, therefore Ap is replaced by BQ̂−1
u BT , where Q̂u is the

diagonal of the velocity mass matrix. This choice avoids the need of boundary
conditions for Ap. The new approximation uses a Robin boundary condition at
inflow given by:

−ν
∂p

∂n
+ w.np = 0, (18)

with w the inflow velocity.
If ν is small, then (18) effectively reduces to a Dirichlet boundary condition. In
the following discussion we call this version new PCD.

We will compare PCD and new PCD with the MSIMPLER (Modified SIM-
PLER) preconditioner that does not require boundary conditions at all [23], [21].
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MSIMPLER is based on a variant of the classical SIMPLE (Semi-Implicit Pres-
sure Linked Equations) method of Patankar used as preconditioner. Instead of
replacing F by diag(F ) = D (as in SIMPLE and SIMPLER), F is replaced by
diag(Qu) = Q̂u. The preconditioner is given by:

MSIMPLER preconditioner:

1. Solve Ŝp∗ = rp − BQ̂−1
u ru.

2. Solve Fu∗ = ru − BT p∗.

3. Solve Ŝδp = rp − Bu∗.

4. update u = u∗ − Q̂−1
u BT δp.

5. update p = p∗ + δp.

where Ŝ = BQ̂−1
u BT . The preconditioner consists of one velocity solve and two

Poisson solves and does not require any extra operators to construct. It shows a
mild dependence of grid size and Reynolds number. In PCD, two new operators
(Ap and Fp) are constructed. Per iteration PCD is cheaper as it requires one
velocity solve and one Poisson solve along with a cheap computation of Q−1

p .

In the next section some numerical experiments are given to get a clear idea
how these preconditioners perform.

4 Numerical Experiments

The preconditioners discussed are applied on a driven cavity flow (enclosed
flow) in a square cavity with enclosed boundary conditions and a lid moving
from left to right given as:

ux = 1 − x4 at y = 1; − 1 ≤ x ≤ 1,

which is known as the regularized cavity problem, and also to a flow over an
obstruction (inflow-outflow). Parabolic inflow conditions are imposed on the
rectangular region that has a rectangular obstacle inside the domain. Velocities
are zero along the top and bottom of the channel and along the obstruction.

First we perform some numerical experiments to test the SILU preconditioner.
Next we compare block preconditioners for both types of flows. The iteration is

stopped if the linear systems satisfy ‖rk‖2

‖b‖2

≤ tol, where rk is the residual at the
kth step of the Krylov subspace method, b is the right-hand side, and tol is the
desired tolerance. Finally we compare SILU and SILUF with MSIMPLER. All
comparisons are done in MATLAB, except the last one, where we use the Finite
Element Package SEPRAN [18], written in FORTRAN.
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In Figure 1, it can be clearly seen that our renumbering p-last per level gives
an optimal profile in combination with a suitable node numbering strategy. The
main advantage of this ordering is that no pivoting is necessary, since during
factorization, the zeros on the main diagonal in the zero pressure block disappear.
This reduces memory and CPU time due to decrease of fill-in.

Table 1, compares p-last and p-last per level ordering, showing that the last
one reduces the time approximately by a factor 2.
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500

600

Profile  = 52195, Bandwidth = 570
p−last ordering with lexicographic numbering

0 100 200 300 400 500 600
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200

300

400

500

600

Profile  =31222,  Bandwidth = 212              
p−last per level ordering with Sloan renumbering

Figure 1: Effect of Sloan renumbering of grid points and p-last per level reordering of unknowns
on the profile and bandwidth of the matrix

Table 1: Solution of the Stokes problem with the Q2-Q1 discretization in the square domain
with an accuracy of 10−6 (Time = total time).

Grid size p-last p-last per level
Number of iterations (Time in seconds)

16 × 16 36 (0.11) 25(0.1)
32 × 32 90 (0.92) 59 (0.66)
64 × 64 255(11.98) 135(6.7)

Next we compare the PCD preconditioners with MSIMPLER. Table 2 gives a
comparison for Re=100. ”iter.” stands for outer iterations and ”Ts” for time in
seconds.We solve the subsystems with a direct solver or one V-cycle of AMG for
both the velocity and pressure subsystem. It can be seen that the new variant
of PCD shows much better convergence than the classical one. This suggests
that proper boundary conditions lead to much better results. The MSIMPLER
preconditioner still performs better than both PCD variants. The convergence
shows a mild dependence on the increase in number of grid elements.

For the PCD variants we see a difference in outer iterations if AMG is used
instead of a direct solver, but in case of MSIMPLER it remains constant. Figure
2 shows that also for a higher Reynolds number MSIMPLER converges better
than PCD.
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Table 2: Flow over an obstruction, Q2-Q1 grid (GMRES, accuracy = 10−6).

Grid PCD New PCD MSIMPLER

Exact AMG Exact AMG ] Exact AMG
iter. iter. (Ts) iter. iter. (Ts) iter. iter. (Ts)

16 × 64 39 40(1.13) 20 25(0.87) 17 18(0.52)
32 × 128 46 53(6.69) 22 26(3.94) 16 16(2.0)
64 × 256 59 67 (30) 25 30(16) 22 22(9.3)
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Figure 2: Flow over an obstruction (Re=300).

To compare the block preconditioners for high Reynolds numbers and increas-
ing grid size, we did some experiments with the driven cavity problem (see Table
3). In [15] it is shown that the flow in the 2D driven cavity remains steady even
up to Re=20000 if sufficient grid points are used. We test these preconditioners
up to Re=8000. For a coarse mesh it can been seen that the number of itera-

Table 3: Driven cavity flow problem, AMG used for the subsystems, Q2-Q1 grid (GMRES,
accuracy = 10−6).

Re 64 × 64 128 × 128 256 × 256

New PCD MSIMPLER New PCD MSIMPLER New PCD MSIMPLER

iter. (Ts) iter. (Ts) iter. (Ts) iter. (Ts) iter. (Ts) iter. (Ts)
500 44(6.8) 34(4.6) 45(29) 42(19) 47(155) 56(122)
1000 54(9.7) 45(8.3) 56(45) 46(28) 58(202) 56(136)
2000 89(15) 69(10) 71(63) 57(39) 74(314) 61(188)
4000 171(30) 118(17) 113(100) 86(58) 94(450) 72(249)
8000 488(109) 304(52) 315(300) 184(127) 198(1035) 125(477)

tions doubles with doubling the Reynolds number. As the mesh becomes finer,
the increase in number of iterations becomes small. From Table 3 it is clear that
usually MSIMPLER takes less iterations than PCD. However, even if the number
of iterations is almost the same, like for RE=1000 on a 256 × 256 grid, still the
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Table 4: CPU time in seconds for solving driven cavity Stokes flow, P2-P1 grid, ( accuracy =
10−6).

Number of nodes MSIMPLER SILU SILUF

17 × 17 0.0080 0.0000 0.0000
33 × 33 0.0800 0.0160 0.0080
65 × 65 0.9161 0.1320 0.0960

129 × 129 13.3408 1.6281 0.8561
257 × 257 250.7437 19.9972 7.7845
513 × 513 4200.4704 275.7932 86.1254

CPU time of MSIMPLER is much smaller. PCD takes more time in solving the
Schur complement approximate system.

Finally in Table 4 we compare SILU, SILUF and MSIMPLER for a Stokes flow
in a square cavity for a series of grids. The inner iterations in MSIMPLER are
carried out with an ILU preconditioned CG method, using a relative accuracy of
10−2. It is clear that SILUF is the best performer with respect to CPU time.

5 Conclusions

We have solved the incompressible Navier-Stokes equations with precondi-
tioned Krylov methods. A reordering has been developed which reduces fill-in in
LU decomposition and is effective if used in an ILU preconditioner. The p-last
per level ordering is a good choice for reordering unknowns with any type of grid
renumbering scheme that reduces the profile. A further reduction in time can be
achieved by allowing extra fill-in.

We compared the MSIMPLER preconditioner with a new PCD version. It
is observed that MSIMPLER is a competitive choice, even if proper boundary
conditions are used in the PCD preconditioner.
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