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Abstract. The development of scalable robust solvers for unstructured finite element
applications related to viscous flow problems in earth sciences is an active research area.
Solving high-resolution convection problems with order of magnitude 108 degrees of free-
dom requires solvers that scale well, both with respect to the number of degrees of freedom
as well as having optimal parallel scaling characteristics on computer clusters. We inves-
tigate the use of a smoothed aggregation (SA) algebraic multigrid (AMG) type solution
strategy to construct efficient preconditioners for the Stokes equation. We integrate AMG
in our solver scheme as a preconditioner to the conjugate gradient method (CG) used dur-
ing the construction of a block triangular preconditioner (BTR) to the Stokes equation,
accelerating the convergence rate of the generalized conjugate residual method (GCR). We
abbreviate this procedure as BTA-GCR.
For our experiments, we use unstructured grids with linear(3D) and quadratic(2D) fi-
nite elements, making the model flexible with respect to geometry and topology. We find
that AMG type methods scale linearly (O(n)), with respect to the number of degrees of
freedom, n. Although not all parts of AMG have preferred parallel scaling characteris-
tics, we show that it is possible to tune AMG, resulting in parallel scaling characteristics
that we consider optimal, for our experiments with up to 100 million degrees of freedom.
Furthermore, AMG-type methods are shown to be robust methods, allowing us to solve
very ill-conditioned systems resulting from strongly varying material properties over short
distances in the model interior.
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1 INTRODUCTION

Solving the Stokes equation is the main time-consuming computation in mantle convec-
tion applications. The transition from 2D to 3D model computations has only worsened
this situation, due to the suboptimal scaling of popular solver implementations with the
number of degrees of freedom; such as ILU type preconditioned CG or parallel direct
solvers (1) (by suboptimal, we mean that the amount of effort spent in solving the system
of equations does not scale linearly with the number of degrees of freedom). The use of
classical geometric multigrid (GMG) type methods has overcome this issue (2), but suffers
from erratic robustness characteristics and constraints with respect to the geometry and
topology of the model domain. In its conventional form (e.g. with Gauss-Seidel relaxation
and linear interpolation), the performance of the GMG method usually deteriorates dras-
tically when applied to problems more difficult than a constant coefficient Poisson-type
equation (3). AMG-type solution strategies (4) do not suffer from these limitations and al-
low for arbitrary discretization strategies. This is an advantage when the Stokes equation
is solved with the finite element method (FEM), since this method implicitly allows for
arbitrary domain geometries.
A key aspect of solving systems of equations, Ax=b, with an iterative method is the use
of a preconditioner, P. Without the use of a suitable preconditioner, the convergence of
any solver will be very slow if A has an unfavorable eigenvalue spectrum. A preconditioner
should improve the eigenvalue spectrum properties of A prior to solving, by applying it as
P−1Ax = P−1b. An additional requirement for a suitable preconditioner is that it must
be computationally inexpensive to construct and apply, with respect to the time spent in
solving the unpreconditioned system.
To solve problems with a large number of degrees of freedom within a reasonable amount
of wall time, the use of parallel computers is necessary. To solve problems on parallel
systems, we subdivide the model domain into so-called sub domains, containing mutually
disjoint (not overlapping) subsets of finite elements. The parallel efficiency of the method
is determined by how well a solution method, executed on a specific hardware configura-
tion, can exploit the parallel layout (domain decomposition) of the problem, with respect
to end-to-end runtime reduction.
Several authors have recently presented solution methods to solve the Stokes equation in
large-scale mantle-convection applications on parallel computers. (5) use a parallel direct
solver, (6,7,8) and (9,10) use geometric multigrid while (11,12) and (13) propose to use a block
preconditioned Krylov method.
Here, we present an alternative solution scheme to solve the Stokes equation. We follow a
somewhat similar strategy as described in (11,12) and (13), in that we use a block precondi-
tioner, the operation of which is approximated by a limited accuracy solve, to accelerate
a Krylov solver for the Stokes equation. Our approach differs from previous work in that
each element of the solver scheme has optimal characteristics. The applied Krylov method
(GCR) allows for a block triangular preconditioner, making the convergence twice as fast
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compared to block diagonal preconditioners (14) , a characteristic of the preconditioner
that is independent of the Krylov method, see Table 1. For the preconditioning opera-
tor construction, we use AMG as a preconditioner to CG resulting in a robust, scalable
subsystem solver. We use spectrally equivalent blocks (with respect to the system to
be solved) in the preconditioner, making the convergence independent of the problem
size. As a result, our method shows a favorable combination of characteristics, i.e., linear
scaling with the number of degrees of freedom and optimal scaling with the number of
processing cores as well as being robust for large localized viscosity contrasts.

2 Description of the Solution method

2.1 Mathematical formulation of the problem

For the analysis of the scaling relations of BTA-GCR, we consider thermal convec-
tion in both a 2D Cartesian and 3D spherical model setup. We assume the fluid to be
incompressible(Boussinesq approximation) and the Prandtl number to be infinite. For
the scaling experiments, we focus on solving the non-dimensional Stokes equation and
incorporate thermal effects only through a contribution to the right-hand side (rhs), with
a given temperature field,

∂jη (∂jui + ∂iuj)− ∂ip = RaTδiz (1)

with the incompressibility constraint

∂juj = 0 (2)

Symbols used are defined in Table 2. For a list of abbreviations refer to Table 3.

2.2 Discretization

The solution of the Stokes equation is formulated in a weak form, approximated by the
Galerkin formulation, and solved on an unstructured grid consisting of linear isoparametric
finite elements.
We use linear stabilized tetrahedral elements (P1-P1), the so called mini element, in 3D
and quadratic Taylor-Hood triangular elements (P2-P1) in 2D (15). The resulting coupled
system of equations for the velocity and the pressure with the incompressibility constraint
leads to a saddle point system of the form,

A

[
u
p

]
=

[
Q GT

G C

] [
u
p

]
= b (3)

in which Q, the velocity stiffness matrix, is symmetric positive definite (SPD). G and
GT are associated with minus the divergence of the velocity and gradient of the pressure
respectively (16). C results from the stabilization of the finite elements (17) in 3D. For our
2D experiments with quadratic Taylor-Hood tetrahedral elements C = 0.
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Problem size

Preconditioner

BD 16× 16 32× 32 64× 64

Solver

MINRES 8 8 8
GMRES 9 9 9

Preconditioner

BTR

Solver
GMRES 5 5 5
GCR 5 5 5

Table 1: The number of iterations for the
SOLCX experiment of (12). For a viscosity jump
of 106. We compare the Block diagonal pre-
conditioner used in (11) with a block triangular
preconditioner, our preferred approach. We ob-
serve that the number of iterations doubles with
BD when compared to BTR.

Symbol Meaning

Ra Thermal Rayleigh number ρα∆Th3

ηκ

T Temperature
p Pressure
η viscosity
E activation energy
R Gasconstant
u velocity
A constrained Stokes system
Q velocity subsystem
G gradient operator(FE context)
GT divergence operator(FE context)
Mp pressure mass matrix
φ basis function
Ω model domain
P preconditioner
S Schur complement
b right hand side
x solution vector
r residual
h element discretization size
n number of degrees of freedom
Enp Parallel efficiency

Table 2: List of symbols

2.3 BTA-GCR method

We employ a Krylov method combined with a so-called block preconditioner for the
saddle point problem (3) (18), based on an incomplete block triangular factorization of the
matrix A of the form,

P =

[
Q GT

0 −S̃

]
(4)

With S̃ an approximation to the Schur complement, GQ−1GT + C.
We solve the saddle point problem arising from the constrained Stokes equation (3) with a
Krylov method, GCR (19), right preconditioned (postconditioned) with a block triangular
preconditioner (BTR) (20).
The GCR algorithm listed in Table 4 contains the block triangular preconditioner P in
the term P−1rk.
Instead of constructing P−1 explicitly, and applying it to the residual r = b − Ax, we
solve

Ps = r (5)

s = [s1; s2]
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List of abbreviations

AMG algebraic multigrid method
BTA-GCR BTR with CG preconditioned with AMG as inner and GCR as outer solver
BTR block triangular preconditioner
CG conjugate gradient, a Krylov solver
FEM finite element method
FGMRES flexible generalized minimal residual , a Krylov solver
GCR generalized conjugate residual, a Krylov solver
GMG geometrical multigrid method
GMRES generalized minimal residual , a Krylov solver
LU lower- and upper-triangular decomposition
ILU incomplete lower- and upper-triangular decomposition
MINRES minimal residual , a Krylov solver
MUMPS Multifrontal Massively Parallel Sparse direct Solver
SPD symmetric positive definite
SA smoothed aggregation, an algebraic multigrid method

Table 3: List of abbreviations

r = [r1; r2]

resulting in the distributed solution scheme,

S̃sk+1
2 = rk

2 (6)

Qsk+1
1 = rk

1 −GTsk+1
2 (7)

We take Mp, the pressure mass matrix (16), scaled with the inverse of viscosity as an

approximation to the Schur complement S̃, which is spectrally equivalent. (21) proved this
for the isoviscous case. The proof for variable viscosity is provided by (22) . This proof only
holds under certain smoothness conditions of the viscosity variations and only for stable
elements. To our knowledge, a proof for the spectral equivalence of the Schur complement
for stabilized elements with Mp has not been published. We present numerical support
that, for the viscosity contrasts we consider in our experiments, this relation holds for
unstable elements. In this case we add C to Mp. Mp is scaled with the viscosity during
assembly, Mpi,j =

∫
Ω

1
η
φiφjdA, where φi are the pressure basis functions. Using the scaled

pressure mass matrix, guarantees h (i.e. element size)-independent convergence of the
Krylov method for system (3) (23). The use of the pressure mass matrix is known to be
sensitive for elongated computational domains and element shapes, resulting in a larger
number of iterations (23). However, for typical domains and element shapes used in our
experiments, this effect is not observed. Experiments by (11) support our observation that
this also holds for 3D spherical domains.
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r0 = b−Ax0

for k = 0, 1, ..., ngcr
sk+1 = P−1rk

vk+1 = Ask+1

for i = 0, 1, ..., k
vk+1 = vk+1 − (vi,vk+1)vi

sk+1 = sk+1 − (vk+1,vi)si

end for
vk+1 = vk+1/‖vk+1‖2
sk+1 = sk+1/‖vk+1‖2
xk+1 = xk + (vk+1, rk)sk+1

rk+1 = rk − (vk+1, rk)vk+1

end for

Table 4: Postconditioned GCR algorithm,
taken from (24)

r0 = b−Ax0

s0 = P−1r0

v0 = s0

for k = 0, 1, ..., ncg
αk = rTk sk

vT
k
Avk

xk+1 = xk + αkvk

rk+1 = rk − αkAvk

if rk+1 sufficiently small exit
sk+1 = P−1rk+1

βk = rTk+1sk+1

rT
k
vk

vk+1 = sk+1 − βkvk

end for

Table 5: Preconditioned CG algorithm the ac-
tion of P−1 is approximated by an inaccurate
solve of s from Psk+1 = rk+1

2.3.1 Solving the subsystems for the preconditioner

We employ AMG from the ML library (25) as a preconditioner to CG for the approximate
solution of the subsystems during the preconditioner construction phase, Equations (6)
and (7). We use AMG as a preconditioner, rather than as a solver, based on the robustness
of this approach, resulting in faster convergence (26). This is especially relevant for localized
viscosity anomalies (27). Using AMG as a preconditioner to CG for the subsystem solution
guarantees h-independent convergence of the solver during the preconditioner construction
phase. Figure 1 illustrates the fixed number of CG iterations for increasing problem size.
The efficiency of AMG as a preconditioner to CG for ill-conditioned symmetric positive
definite (SPD) systems, arising in geodynamic applications, on parallel computers was
previously shown by (28,29). One AMG V-cycle is used to precondition Q. Again we do
not explicitly construct the preconditioner P, but approximate P−1 by an inaccurate solve
of s from Ps = r, Table 5. In Figure 3 we present a flow diagram illustrating the steps
that are taken to solve the velocity part of system 3, illustrating the relation between the
different parts of the solution method.

2.3.2 Solving the BTR preconditioned system

The Krylov method used to solve the preconditioned saddle point problem (3), must
be able to handle an asymmetric preconditioner, since the BTR preconditioner is asym-
metric. For a thorough discussion on the subject of suitable Krylov methods for BTR
preconditioners, we refer to (12) Section 1.1
MINRES, the Krylov solver used by (11) and (13), is not designed to handle asymmetric
preconditioners. Their choice to use MINRES with a block diagonal (BD) preconditioner
results in approximately twice the number of iterations compared to BTR (14). Our ex-
periment comparing BD with MINRES and BTR with GCR, Table 1, show that this is a
robust feature of the preconditioner
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Figure 1: The solution of equation 7 with CG
preconditioned with one AMG V-cycle scales
optimal with the number of degrees of freedom.
A difference of one iteration between experi-
ments with different number of degrees of free-
dom can be discarded

Figure 2: The scaling of CG with increasing
number of processing cores. The number of de-
grees of freedom is kept fixed per processing
core. The timing results are for a single CG
iteration step. Although we observe a some-
times erratic wall time behavior with respect
to the number of processing cores, the general
trend is linear up to several hundred process-
ing cores. The maximum numbers of degrees
of freedom for these experiments with 180,000,
400,000, and 720,000 degrees of freedom per
processing core are 72, 102.4, and 72 million,
respectively.

We use GCR, a Krylov method similar to FGMRES (30,24), for the solution of (3) right
preconditioned by (4). Since GCR has an increasing storage requirement with increas-
ing number of iterations, unlike CG or MINRES, this method can become impracticable
when large number (more than several tens) of iterations are needed to solve the system
to an acceptable accuracy. In our proposed solution method, we can keep the number of
iterations for GCR low, not more than 30, since we solve the velocity subsystem in the
preconditioner phase to a high accuracy, see Table 6 and Table 7. This has the added
advantage that we do not have to apply the preconditioner for the velocity subsystem as
often as would be the case with a lower accuracy subsystem solve. For a comprehensive
analysis of the characteristics of BTR as a preconditioner to GCR for the Stokes equation,
we refer to (31,32). They show that BTR is a robust preconditioner for the SINKER model
of (12) and an example from an aluminium extrusion model. They also explain in more
detail the way the pressure mass matrix is scaled with viscosity.

3 Numerical experiments and performance tests

We performed experiments to analyze the scaling of BTA-GCR with,

• number of degrees of freedom

• number of parallel processing cores
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Figure 3: We illustrate the relation between the different solver and preconditioner steps to solve for the
velocity part of system 3. We solve for x by applying a postconditioner P to system 3 and solving with
GCR. the effect of applying the preconditioner P(BTR) during the GCR iterations is approximated by an
incomplete solve of sk+1 from Psk+1 = rk. This results in the distributed solution scheme 5. We solve the
velocity part of this distributed scheme with PCG. during the iteration of PCG the effect of applying the
preconditioner P̂ is approximated by applying a single V-cycle of AMG to ŝ. The approximate solution
for the velocity in PCG is substituted in the part of sk+1 associated with the velocity unknowns in x.
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iterations GCR/CG (walltime in seconds)

number of
elements ∆η=10 103 106 107 108

32× 32 5/11
64× 64 18(50) 19(52) 21(56) 28(72) 35(88)
64× 64 6/8(31) 4/9(24) 5/11(30) 5/16(36) 5/20(40)
128× 128 5/11
256× 256 5/11

Table 6: We reproduced the SOLCX experiment from (12). For a viscosity jump of 106, the number of
iterations of the outer GCR and average number for inner CG solver, preconditioned with AMG, for the
solution of the velocity subsystem (7) is h-independent. For increasing viscosity contrast, we observe a
mild increase for both inner and outer iterations. For a large viscosity contrast, the amount of inner
iterations increases sharply. In brackets we present the total walltime for the GCR iteration, AMG setup,
CG iteration and AMG application for a high accuracy inner CG solve for the velocity subsystem (six
orders of magnitude relative residual reduction) and for a run where there is no inner CG solve, and we
just apply the AMG V-cycle. Solving the velocity subsystem to a high accuracy approximately halves
the walltime.

• order of magnitude viscosity contrasts

3.1 Scaling with respect to the number of degrees of freedom

For these scaling experiments, we choose a 2D isoviscous Cartesian setup based on the
model by (33), in which a smooth initial temperature depth profile is perturbed by a small
amplitude periodic temperature field, driving the thermal convection.
The h-independent scaling characteristics of both CG (preconditioned with one AMG V-
cycle for the velocity subsystem of BTR , Equation 7) and GCR preconditioned with BTR,
are shown in Figure 1 and Table 6, the number of iterations remain constant for increasing
problem size. We observed this scaling relation, both for 2D and 3D model experiments.
The 3D model experiments are performed for a similar setup with the exception of the
model domain geometry, which consist of a spherical section.

3.2 Scaling with respect to the number of processing cores

For these scaling experiments, we choose the same problem setup as for the previous
experiment.
We found that the parallel efficiency En

p = Ts

Tn
p

(with Ts the walltime for the sequential

run and T np walltime for parallel run with n processing cores and n times the number of
degrees of freedom) scales almost linearly for both the application of the AMG V-cycle
preconditioner as well as CG as shown in Figures 2 and 5. The setup of the AMG V-
cycle does not scale linearly due to the non-linear scaling of both the analysis and the
factorization part of the parallel direct solver (34) used on the coarsest grid, Figure 4.
Fortunately, the AMG setup phase has to be performed only once per time step where
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b=0 b=0.2 b=0.3 b=0.4

accuracy Iterations(inner/outer)
outer/inner (walltime in seconds on 1/100 processing cores)

10−6/ 46(113/264) 59(143/334) 57(138/323) 70(168/394)
10−6/10−2 38/6(135/266) 39/7(146/282) 38/8(151/284) 43/9(179/330)
10−6/10−3 29/8(117/220) 30/9(127/235) 33/10(146/265) 34/11(157/280)
10−6/10−4 27/9(115/213) 29/11(135/241) 30/13(152/263) 31/13(157/272)
10−6/10−5 26/11(122/218) 28/13(143/247) 29/15(160/269) 30/16(171/285)
10−6/10−6 26/12(128/224) 27/15(149/251) 28/17(166/274) 29/18(178/290)

Table 7: We analyze the robustness of BTA-GCR for sharp, large amplitude viscosity jumps resulting
from the relation T (x, y) = T (y)

[(
1− b

2

)
+ br

]
, with r a random distribution between 0 and 1. The

walltime is minimal for inner accuracy 10−2 − 10−3 for small values of b (in some cases just applying
the preconditioner without solving with CG at all results in the lowest walltime). For larger values of b,
it pays off to solve the inner problems with an accuracy 10−3 − 10−4. In brackets, we present the total
walltime for the GCR iteration, AMG setup, CG iteration and AMG application for a run on a single
and a run on 100 processing cores with 720.000 degrees of freedom per processing core. This illustrates
that it pays of to reduce the number of outer iterations when increasing the number of processing cores
due to the (initial) non linear scaling of the preconditioner application phase. This can be achieved by
solving the velocity subsystem to a higher accuracy.

the AMG application and CG solve have to be performed for each outer GCR iteration,
Figure 3. This weak scaling relation is plotted for a 3D spherical model geometry in
Figures 6, 7 and 8

3.2.1 Domain decomposition

For our 3D scaling experiments we look at strong and weak scaling characteristics. For
our 3D weak scaling experiments we use parmetis to enhance an initial blockwise domain
decomposition. For our strong scaling experiments we look at computational domains
with a continuous outer boundary (a complete sphere). In this case we use a domain
decomposition method based on the method by (35). This method finds the minimum
energy distribution of charged particles on the outer surface of a sphere. These positions
are used to determine the domain boundaries on the outer surface from which volumes
are creates by continuation of domain boundaries towards the center of the sphere (36).
We show strong scaling results for this domain decomposition strategies in Figure 9, 10
and 11 and .

3.3 Robustness

To test the robustness of BTA-GCR, we performed a number of experiments with differ-
ent viscosity contrasts, similar to (33) and (12). These include the following configurations,
(1) a step function for the viscosity in the x-direction across element boundaries, (2) a
random viscosity perturbation across element boundaries (33). We kept the viscosity con-
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Figure 4: The amount of wall time for the AMG
construction phase. With increasing number of
processing cores the wall time increases nonlin-
early. We can attribute this effect to the analy-
sis phase of the direct solver, used to solve the
coarse system, and to a lesser extent to its fac-
torization phase. The other parts of the AMG
setup phase have much weaker nonlinear scaling
characteristics.

Figure 5: The amount of walltime for a single
AMG V-cycle. We observe that after an initial
increase in walltime with increasing number of
processing cores, this relation flattens out to
become roughly linear

stant per element, for all experiments, to prevent steep viscosity gradients in the element
interior. Steep gradients in the interior of an element can otherwise be prevented by us-
ing an adequate, local, mesh resolution. For the first case, we reproduced the experiment
SOLCX (12). We solve the subsystems for the construction of the BTR with high relative
accuracy ‖rk‖‖r0‖ ≤ 10−5 and outer GCR solver with 10−6. For increasing viscosity contrast,
we observe that the number of outer iterations remains almost constant. The number of
inner iterations to solve the BTR subsystems is constant for low viscosity contrasts, in-
creases slightly for a high viscosity contrast, and increases sharply for very high viscosity
contrast ∆η = 108, see Table 6. However, models with extremely high viscosity contrast
across a single element will result in inaccurate results for the FE method (37) and should
therefore be avoided. The inaccuracy is most notable in high amplitude spurious pressure
oscillations in the high viscosity area but is also, though to a much lesser extent, present
in the solution for the velocity. Table 6 also shows the constant number of iterations
with increasing problem size similar to our experiments with an isoviscous model. This
illustrates in a numerical sense the spectral equivalency of the scaled PMM to the Schur
complement. This was also shown by (11) and (31) .
The second experiment has the same setup as the scaling experiments in Sections 3.1
and 3.2, but this time the viscosity is temperature dependent through the relation η =

η0e
E
R

(
1
T
− 1

T0

)
with R the gas constant and E = 101.1kJmol−1, the activation energy. A

smooth background temperature field is randomly perturbed T (x, y) = T (y)
[(

1− b
2

)
+ br

]
with b a constant between 0 and 0.4 and r a random distribution between 0 and 1 which
gives rise to viscosity jumps of up to 4.4 orders of magnitude across element boundaries.
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Figure 6: The scaling of CG with increasing
number of processing cores in 3D. The number
of degrees of freedom is kept fixed per process-
ing core. The timing results are for a single CG
iteration step without the preconditioner appli-
cation step. The maximum numbers of degrees
of freedom for these experiments is 55 million.
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Figure 7: The amount of wall time for the
AMG construction phase in 3D. With increas-
ing number of processing cores the wall time in-
creases nonlinearly. This is especially true when
the coarse system is large relative to the total
problem size. When we increase the number of
coarse levels in the AMG V-cycle not only the
total walltime decreases put also the parallel
scaling characteristics become more favorable.

Table 7 shows that our solution method is only mildly sensitive to increasing viscosity
contrasts across element boundaries. This experiment also illustrates the relation between
the accuracy of the subsystem solution and the number of outer GCR iterations. For small
viscosity jumps, the subsystem can be solved inaccurately (with tolerance 10−2 − 10−3)
with a small number of inner iterations, without increasing the number of outer iterations,
but for larger jumps the optimum, in terms of walltime, occur with an inner accuracy
between 10−3 − 10−4.

4 Discussion and concluding remarks

We showed that BTA-GCR scales linearly with the number of degrees of freedom and
has optimal scaling characteristics with increasing number of processing cores. We also
showed that our method is robust with respect to large localized viscosity contrasts. In (38)

we showed results for 2D model experiments that we extended to 3D in this study.
An essential part of BTA-GCR is the use of AMG as a preconditioner to CG during the
preconditioner (BTR) construction phase which is the only scalable method currently
known for unstructured grid models.
Recently authors have reported results with block preconditioners for saddle point prob-
lems in geodynamical applications, (12) (11) and (13). The method employed by (12) uses a
preconditioner for the pressure part based on the velocity matrix, leading to h-dependent
scaling of the number of iterations making the method suboptimal for large scale mod-
els. (11) present a method that is the most closely related to our approach; however, their
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Figure 8: The amount of walltime for a single
AMG V-cycle in 3D. We observe that after an
initial increase in walltime with increasing num-
ber of processing cores, this relation flattens out
to become roughly linear for a well balanced do-
main decomposition.
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Figure 9: Strong scaling for a single CG itera-
tion in 3D. The model size is 13.5×106 degrees
of freedom. We observe a linear strong scaling
relation up to 128 processing cores. It seems
that there is an offset in the scaling between
16 and 32 cores that could be attributed to the
number of processes we run per node, 16.

use of a block diagonal rather than a block triangular preconditioner makes the conver-
gence rate on average twice as small for the outer Krylov solver (14), compared to block
diagonal preconditioners, Table 1. The only extra operation for BTR preconditioners is
one vector update and one matrix vector product, which are negligible compared to the
overall solution scheme. Their results are, however, unique in the size of the problem they
have solved and the number of processing cores they have employed for their calculation.
This illustrates the potential of BTR in combination with AMG (i.e. BTA-GCR) to solve
problems with several billion degrees of freedom efficiently on large numbers of processing
cores in parallel (39).
(13) present a diagonal preconditioner where the sub-block for the velocity is precondi-
tioned with its diagonal and a lumped pressure mass matrix scaled with the viscosity is
used for the pressure block. This class of preconditioners can only be used efficiently for
isoviscous models or models with minimal viscosity contrasts in the model interior. We
found that for large viscosity contrast convergence of the outer Krylov solver depends
critically on the approximation of the BTR preconditioner with respect to the solution of
the velocity subsystem, Equation 7.
Our approach does not suffer from any of the limitations of the above mentioned ap-
proaches and scales optimally both with the number of degrees of freedom and with the
number of processing cores. The method is able to handle large viscosity contrasts, to
the extent that the numerical accuracy of the FE method is the limiting factor, not the
convergence of the numerical scheme.
Modelling geodynamic processes that incorporate localization phenomena requires a high
resolution model with robust scalable solvers. By employing AMG type methods to con-
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Figure 10: Strong scaling for a single AMG V-
cycle in 3D. The model size is 13.5 × 106 de-
grees of freedom. We observe a linear strong
scaling relation up to 64 processing cores. We
attribute the drop off to the back substitution
phase of the direct solver on the coarsest grid.
This phase is performed by a limited number
of processes, in our case 16, redundantly. Per-
forming the back substitution on all processes
in parallel is not practical considering the size
of the coarse system, typically less than 1000
matrix rows.

8 16 32 64 128 256
number of processing cores

5.1

11

26

58

w
al

lti
m

e 
(s

ec
)

strong scaling
linear scaling

Figure 11: Strong scaling for the AMG con-
struction phase in 3D. The model size is 13.5×
106 degrees of freedom. We observe a lin-
ear strong scaling relation up to 32 processing
cores. We attribute the drop off to the analysis
and factorization phase of the direct solver on
the coarsest grid.

struct a preconditioner to solve the constrained Stokes equation, we are able to solve this
kind of problems within a reasonable walltime.
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