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Abstract. This brief paper explores the development of scalable, nonlinear, fully-implicit
solution methods for a stabilized unstructured finite element (FE) discretization of the 2D
incompressible (reduced) resistive MHD system. The discussion considers the stabilized
FE formulation in context of a fully-implicit time integration and direct-to-steady-state
solution capability. The nonlinear solver strategy employs Newton-Krylov methods, which
are preconditioned using fully-coupled algebraic multilevel (AMG) techniques and a new
approximate block factorization (ABF) preconditioner. The intent of these preconditioners
is to enable robust, scalable and efficient solution approaches for the large-scale sparse
linear systems generated by the Newton linearization. We present results for the fully-
coupled AMG preconditioner for two prototype problems, a low Lundquist number MHD
Faraday conduction pump and moderately-high Lundquist number incompressible magnetic
island coalescence problem. For the MHD pump results we explore the scaling of the
fully-coupled AMG preconditioner for up to 4096 processors for problems with up to 64M
unknowns on a CrayXT3/4. Using the island coalescence problem we explore the weak
scaling of the AMG preconditioner and the influence of the Lundquist number on the
iteration count. Finally we present some very recent results for the algorithmic scaling of
the ABF preconditioner.

This work was partially supported by the DOE Office of Science AMR program at San-
dia National Laboratory under contract DE-AC04-94AL85000, and Oak Ridge National
Laboratory under contract DE-AC05-00OR22725.
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1 INTRODUCTION

The magnetohydrodynamics (MHD) model describes the dynamics of charged fluids
in the presence of electromagnetic fields. The mathematical basis for the continuum
modeling of these systems is the solution of the governing partial differential equations
(PDEs) describing conservation of mass, momentum, and energy, augmented by Maxwell’s
equations for the electric and magnetic field. The resistive MHD model is non-self adjoint,
strongly coupled, highly nonlinear, and characterized by multiple physical phenomena that
span a very large range of length- and time-scales. These characteristics make the scalable,
robust, accurate, and efficient computational solution of these systems, over relevant
dynamical time scales of interest (or to steady-state solutions), extremely challenging.

For multiple-time-scale systems, fully-implicit methods can be an attractive choice
that can often provide unconditionally-stable time integration techniques4, 1. The stabil-
ity of these methods, however, comes at a cost, as these techniques generate large and
highly nonlinear sparse systems of equations that must be solved at each time step. In
the context of MHD, the dominant computational solution strategy has been the use of
explicit and partially implicit methods that include implicit-explicit, semi-implicit, and
operator-splitting time integration methods (see5 and the references contained therein).
With the exception of fully-explicit strategies, which are limited by stability restrictions
to follow the fastest component time scale, all these temporal integration methods include
some implicitness to enable a more efficient solution of MHD systems. Such implicitness
is aimed at removing one or more sources of numerical stiffness in the problem, either
from parabolic diffusion or from fast wave phenomena. Recently, considerable progress
has been made in the development of fully-implicit formulations that attempt to ro-
bustly and accurately integrate these systems while following the dynamical time-scales
of interest24, 25, 45, 34, 31, 7, 5, 6.

This study complements previous work by exploring the development of a robust, ef-
ficient, fully-coupled stabilized FE formulation for incompressible resistive MHD with
solution methods that enable both fully-implicit transient and direct-to-steady-state so-
lutions. Our solution method relies on inexact Newton-Krylov methods to solve the
resulting large-scale nonlinear algebraic systems. For preconditioning, we compare well-
known variable-overlap, additive, one-level Schwarz domain-decomposition methods33, an
algebraic multilevel (AMG) technique employing a graph-based aggressive-coarsening ag-
gregation method28, 40, and an initial approximate block factorization (ABF) technique
that utilizes the above AMG solver as a sub-block physics solver. The AMG and ABF
preconditioners effectively use corrections that are computed by a sequence of coarse op-
erators to accelerate the convergence of the iterative Krylov method on the fine mesh.
Employing a multilevel preconditioner is intended to enable the development of scalable
solution methods for MHD.

In this study, we focus on a 2D incompressible, isothermal, resistive MHD formulation.
This formulation is suitable for reduced MHD models44, 20, 14 as well as low magnetic-
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Reynolds-number liquid metal MHD29, 10. As in standard reduced MHD, the magnetic
field dynamics is described in terms of a single component of the vector potential (which
is also the magnetic flux function). Unlike standard reduced MHD, however, we choose to
describe the flow in primitive variables and solve directly for the flow velocity-vector and
pressure. We discretize the resulting MHD system using a simplified form of a consistently
stabilized FE method (FE), based on the general approach of Hughes et. al. (see13 and
references therein).

2 REDUCED MHD MODEL EQUATIONS

Our base MHD model is the one-fluid visco-resistive MHD system18. This model pro-
vides a continuum description of charged fluids in the presence of electromagnetic fields.
Formally, isothermal visco-resistive MHD augments the Navier-Stokes fluid description
with a magnetic stress term in the momentum equation. The system is closed with
Faraday’s law, Ampere’s law, and the solenoidal constraint for the magnetic field. The
resulting system of equations is:
Momentum Conservation:

Ru = ρ
∂u

∂t
+ ρ(u · ∇u)−∇ · (T + TM) = 0 (1)

Total Mass Conservation:

RP =
∂ρ

∂t
+∇ · (ρu) = 0 (2)

Magnetics Evolution Equation:

RB =
∂B

∂t
−∇× (u×B) +∇× (

η

µ0

∇×B) = 0. (3)

Where

T = −P I + Π = −P I− 2

3
µ(∇ · u)I + µ[∇u +∇uT ]

TM =
1

µ0

B⊗B− 1

2µ0

‖B‖2I

In these equations the unknowns are the velocity vector u, the hydrodynamic pressure
P , and the magnetic flux, B. The transport properties, ρ, µ, η, µ0, are respectively, the
density, dynamic viscosity, magnetic resistivity, and µ0 is the magnetic permeability of
free space. Constitutive equations define the Newtonian stress tensor, T. Ampere’s law
neglecting the displacement current provides the plasma current, J = 1/µ0∇ × B, and
the tensor, TM, is the magnetic stress tensor.

For the purposes of this study, we focus on a 2D geometry in the incompressible
limit (∇ · v = 0). This limit is useful in the modeling of various applications such as
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low-Lundquist-number liquid-metal MHD flows29, 10, and high-Lundquist-number, large-
guide-field fusion plasmas44, 20, 14. In the 2D incompressible regime, it can be shown that
the in-plane and out-of-plane dynamics decouple (i.e., Bz, vz, with z the ignorable di-
rection, do not impact the evolution of the system in the x − y plane). As a result, the
system in equations (1) – (3) simplifies considerably, as it can be expressed in terms of a
few scalar quantities like the vorticity component in the ignorable direction, the in-plane
streamfunction, and the poloidal flux (or, alternatively, the vector potential component in
the ignorable direction)44, 20, 14. For our implementation, however, it is of interest to keep
a primitive description of the fluid flow, and to enforce the incompressibility constraint
explicitly (as is often done in the CFD community [see13 and references therein]). Thus,
we preserve a 2D form of equation (1), and we replace the continuity equation (2) by
∇ · v = 0.

In regards to the magnetic field evolution equation, we replace Eq. (3) by an evolution
equation for the vector potential component in the ignorable direction, A = (0, 0, Az),
which reads:

∂Az

∂t
+ v · ∇Az −

η

µ0

∇2Az + E0
z = 0. (4)

This equation is equivalent to equation (3) in two dimensions.

3 A STABILIZED FE FORMULATION FOR 2D RESISTIVE MHD AND
THE DISCRETE SYSTEM

Table 1 presents the governing equations in convected form, for momentum, total mass,
and vector potential in residual notation. The continuous PDE problem, defined by the
2D resistive MHD equations in Table 1, is approximated by a stabilized FE formulation.
This formulation allows for stable equal-order velocity-pressure interpolation and provides
for convection stabilization, as described below.

We employ stabilized FE methods to avoid stability and algorithmic limitations of
mixed Galerkin FE formulations. In particular, in a mixed Galerkin FE formulation of
the momentum-continuity equations of the Navier-Stokes part of the MHD system, there
is a stability requirement that the discrete spaces satisfy the the Ladyzhenskaya-Babuska-
Brezzi (LBB) stability condition (see e.g.19).This condition prevents the use of equal-order
finite element spaces, defined with respect to the same partition of the computational
domain in finite elements. In addition the linearization of the nonlinear mixed Galerkin
FE formulation also leads to indefinite linear systems, which are more difficult to solve by
iterative methods. Finally, an additional difficulty is that the mixed Galerkin formulation
is prone to instabilities for highly convected flows, even if the LBB condition is satisfied
by the finite element spaces.

Consistently stabilized finite element methods for Navier-Stokes address the issues
above by using a combination of properly weighted residuals of the governing balance
equations. These methods simultaneously relax the incompressibility constraint and add
streamline-diffusion to the weak equations to limit oscillations in highly convected flows13.
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Momentum Rm = ρ
∂v

∂t
+ ρ(v · ∇v) +∇ ·

(
− 1

µ0

B⊗B−Π + (P +
1

2µ0

‖B‖2)I

)

Total Mass RP = ∇ · v

Z-Vector Po-
tential

RAz =
∂Az

∂t
+ v · ∇Az −

η

µ0

∇2Az + E0
z

B = ∇×A; A = (0, 0, Az)

Table 1: Residual form of governing resistive MHD equations with the 2D form of the vector potential
evolution equation in advection-diffusion form. The primitive variables are the velocity vector u, the
hydrodynamic pressure P , and the Az component of the vector potential in 2D.

Momentum
Fm,i =

∫
Ω

ΦRm,idΩ +
∑

e

∫
Ωe

ρτ̂m(v · ∇Φ)Rm,idΩ

Total
Mass

FP =

∫
Ω

ΦRPdΩ +
∑

e

∫
Ωe

ρτ̂m∇Φ ·RmdΩ

Z-Vector
Potential

FAz =

∫
Ω

ΦRAzdΩ +
∑

e

∫
Ωe

τ̂Az(v · ∇Φ)RAzdΩ

Table 2: Stabilized finite element formulation of transport/reaction PDEs, where the residual equations
Ri are presented in Table 1. Here Φ is a global weighting function used to formally define the weak form.
The sum

∑
e indicates the integrals are taken only over element interiors Ωe and integration by parts is

not performed.

The specific stabilized FE formulations employed in this study are shown in Table 2. The
intrinsic-time-scale stability parameters (τ̂m, τ̂T , and τ̂Az) are based on the formulations of
Hughes and Mallet23 and Shakib43 for Navier-Stokes with an adaptation of the stabilized
formulation of Codina and Hernandez-Silva9 for a resistive MHD system. Details of this
formulation can be found in40.

The discrete form of the matrix equations that results from the stabilized FE discretiza-
tion of the governing balance PDEs isF BT Z

B C 0
Y 0 D

 ∆v
∆p

∆Az

 =

 −Fv

−Fp

−FAz

 . (5)

In this representation, the vectors, ∆v,∆p,∆Az, contain the Newton updates to the
nodal velocities, pressures and vector potential respectively. The block matrix, F, corre-
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sponds to the combined discrete transient, convection, diffusion and stress terms acting on
the unknowns ∆v; BT, corresponds to the discrete gradient operator; Z the Lorentz force
operator; B, the divergence operator; C, corresponds to the discrete “pressure Laplacian”
type operator that is generated by the pressure stabilization13; Y, is a vector mass-matrix
type operator scaled by the gradient components of Az; and D is a combined discrete tran-
sient, convection, diffusion operator acting on ∆Az. The vectors Fv, FP, and FAz contain
the right hand side residuals for Newton’s method. The existence of the weak form Lapla-
cian matrix, C, in the stabilized FE discretization is in contrast to Galerkin methods using
mixed interpolation that produce a zero block on the total mass continuity diagonal. The
existence of the block matrix C helps to enable the fully-coupled solution of the linear
systems with a number of algebraic and domain decomposition type preconditioners that
rely on non-pivoting ILU type factorization, or in some cases methods such as Jacobi or
Guass-Seidel as sub-domain solvers41, 40.

4 FULLY-IMPLICIT FULLY-COUPLED SOLUTION BY NEWTON-KRYLOV
METHODS

For stiff (multiple-time-scale) PDE systems such as MHD, fully-implicit methods are
an attractive choice that can often provide unconditionally-stable time integration tech-
niques. These methods can be designed with various types of stability properties that
allow robust integration of multiple timescale systems without the requirement to resolve
the stiff modes of the system (which are not of interest since they do not control the
accuracy of time integration1). The implicit time integration methods used in this study
is a second-order A-stable implicit midpoint rule.

The result of a fully-implicit or direct-to-steady-state solution technique is the develop-
ment of very large-scale, coupled highly nonlinear system(s) that must be solved. There-
fore, these techniques place a heavy burden on both the nonlinear and linear solvers and
require robust, scalable, and efficient nonlinear solution methods. In this study Newton-
based iterative nonlinear solvers12 are employed to solve the challenging nonlinear systems
that result in this application. These solvers can exhibit quadratic convergence rates, in-
dependently of the problem size, when sufficiently robust linear solvers are available. For
the latter, we employ Krylov iterative techniques. The robustness and efficiency of these
methods rely on effective preconditioning methods. We describe the methods employed
in this study below.

4.1 Schwarz domain decomposition preconditioners

For the considered class of linear systems described above, convergence is not achieved
without preconditioning due to ill-conditioning in the underlying matrix equations36. This
paper considers Schwarz domain decomposition preconditioners, where the basic idea is to
decompose the computational domain Ω into overlapping subdomains Ωi and then assign
each subdomain to a different processor33. One application of the algorithm consists of
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solving on subdomains and then combining these local solutions to construct a global
approximation throughout Ω. The ith subdomain problem is usually defined by enforcing
homogeneous Dirichlet boundary conditions on the subdomain boundary, ∂Ωi. In the
minimal overlap case, the algebraic Schwarz method corresponds to block Jacobi where
each block contains all degrees of freedom (DOFs) residing within a given subdomain.
Convergence is typically improved by introducing overlap, which can be done recursively.
Incomplete factorization, ILU(k), is employed to approximate the solution of the local
Dirichlet problems and avoid the large cost of direct factorization36. We note that the
one-level preconditioner is black-box in that the overlapping subdomain matrices are
constructed completely algebraically.

One possible drawback of the one-level Schwarz method is its locality. A single ap-
plication of the algorithm transfers information between neighboring sub-domains. This
implies that many repeated applications are required to combine information across the
entire domain. Thus, as the number of subdomains increases, the convergence rate deteri-
orates for standard elliptic problems due to the lack of global coupling33. The convergence
rate also deteriorates as the number of unknowns per subdomain increases when ILU(k)
is used for a subdomain solver. To improve algorithmic performance, coarse levels can
be introduced to approximate global coupling33, 47, 41 and produce a multilevel precon-
ditioner. The use of a coarse mesh to accelerate the convergence of a one-level Schwarz
preconditioner is similar in principle to the use of a sequence of coarser meshes in multigrid
methods46.

4.2 Fully-coupled AMG preconditioners

In this paper, only algebraically generated coarse levels are considered. These are
significantly easier to implement and integrate with a complicated unstructured simulation
than geometric coarse grids47, 41, 42. Most algebraic multigrid methods (AMG) associate a
graph with the matrix system being solved. Graph vertices correspond to matrix rows for
scalar PDEs, while for PDE systems it is natural to associate one vertex with each nodal
block of unknowns, e.g. velocities, pressure and vector potential at a particular grid point.
A graph edge exists between vertex i and j if there is a nonzero in the block matrix which
couples i’s rows with j’s columns or j’s rows with i’s columns. In some situations, it may
be advantageous to omit edges if all entries within the coupling block are small35. In this
study, METIS and ParMETIS26 are used to group fine graph vertices into aggregates so
that each aggregate effectively represents a coarse graph vertex. These graph partitioning
packages subdivide the matrix graph so that each partition has no more nodes than a
user supplied parameter and that each partition is somewhat spherically shaped. This
graph partitioning is then applied recursively until the user specified number of levels has
been achieved. Once the coarse mesh is determined, an initial grid transfer is constructed
corresponding to piecewise constant interpolation. The grid transfer matrix, P , contains
only zeros and ones. In the scalar PDE case, Pij equals one only if the ith fine grid
point has been assigned to the jth aggregate. Within a PDE system, the grid transfer
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is a block system with an identity matrix for the (i, j)th block if the ith fine grid point
has been assigned to the jth aggregate. This initial grid transfer can then be improved
by smoothing the corresponding basis functions49, 48. In this study, we employ both a
non-smoothed (NSA) and Petrov-Galerkin smoothed aggregation (PGSA) algorithm as
implemented in the ML multilevel package in Trilinos and described in37, 39.

Finally we note that we orient the graph partitioning algorithm so that they generate
somewhat larger aggregates than those typically used in standard smoothed aggregation.
This aggressive coarsening significantly reduces the number of unknowns between consec-
utive levels. This generally limits the total number of levels (≤ 5) which we find better
suited for parallel computations38, 37. Additionally, larger aggregates are consistent with
using a sub-domain solver based on Schwarz/ILU(k) which in the multigrid context cor-
responds to a somewhat heavyweight smoother (compared to Gauss-Seidel often used in
standard multigrid). That is, one can coarsen more aggressively when a more substantial
smoother is employed. The same ILU(k) algorithm is used as a smoother on each level
and on the coarsest level the KLU11 sparse direct solver is employed.

4.3 Approximate block factorization preconditioners

In this study we also consider preconditioners based on approximate block factorization
(ABF) methods8, 30, 2, 15. ABF preconditioners for systems, carefully consider the spectral
properties of the component block operators and the properties of the approximate Schur
complement operators that are employed. Through this linear algebraic view of precon-
ditioning, a simplified system of block component equations is developed that encodes a
specific “physics-based” decomposition for many applications. An important goal of the
ABF approach is to produce scaler or vector sub-systems to which AMG methods are
more effectively applied as optimal solvers.

To motivate our initial ABF preconditioner of the resistive MHD system consider the
block LU factorization of the Jacobian in Eqn. (5):F BT Z

B C 0
Y 0 D

 =

 I 0 0
BF−1 I 0

YF−1 −YF−1BTS
−1

I

F BT Z
0 S −BF−1Z
0 0 W

 (6)

where

S = C−BF−1BT (7)

W = D−YF−1(I + BT S−1BF−1)Z. (8)

This factorization has two Schur complements. First, Eq. (7) is recognized as the fluid
Schur complement derived from the Navier-Stokes equations15. While Eq. (8) is Maxwell’s
equation Schur complement with an embedded contribution from the fluid Schur comple-
ment. The nested nature of W presents a challenge for effective approximation. Unfor-
tunately reordering the blocks of the incompressible MHD system does not alleviate the
problem of nested Schur complements.
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To address this issue we have developed an initial approach where the fluid coupling and
the velocity/magnetics coupling are applied in sequence by an operator-splitting approach
(a type of approximate factorization)16. Decomposing the Jacobian into a sum of fluid
flow and Maxwell’s equation components by applying the operator-split approximation
we haveF BT Z

B C 0
Y 0 D

 ≈
F 0 Z

0 I 0
Y 0 D

F−1 0 0
0 I 0
0 0 I

F BT 0
B C 0
0 0 I

 =

F BT Z
B C 0

Y YF−1BT D

 . (9)

The composite matrix on the right is the effective numerical approximation generated by
the operator-split approximate factorization. It should be noted that this approximation,
when used as a preconditioner, requires the solution to both the magnetics/velocity cou-
pling and the Navier-Stokes system. Because of the relatively simple 2 × 2 structure of
these systems the resulting Schur complements are more easily approximated. The mag-
nitude and the behavior of the resulting splitting error is currently under analysis and
numerical investigation.

4.3.1 Inverting the Fluid and Magnetic/Velocity Systems

The preconditioner defined by Eq. (9) requires an approximate inverse of the 2 × 2
systems [

F BT

B C

]
and

[
F Z
Y D

]
. (10)

Preconditioning for the Navier-Stokes equations (the matrix on the left) has been an active
area of study. The approach we have taken is to use the Pressure Convection-Diffusion
(PCD) preconditioner15. This uses a block factorization of the Navier-Stokes system and
approximates the inverse of the fluid Schur complement (see Eq. (7)) using a commuting
argument.

For the magnetics/velocity coupling we employ a similar 2× 2 block LU factorization.
A preconditioner utilizing a block factorization based on the ordering in Eq. (10) requires
that the inverse of the Schur complement

P = D−YF−1Z (11)

is approximated. Similar to6 (with the exception that they use a B field formulation) we
assume the following continuous commuting condition

∇Az ·
(
∂

∂t
+ ~w · ∇ − ν∇2

)
≈
(
∂

∂t
+ ~w · ∇ − ν∇2

)
∇Az · . (12)

This assumption motivates the discrete commuting condition YQ−1
u F ≈ DQ−1

a Y, where
Qa and Qu are the vector potential and velocity mass matrices respectively. Rearrang-
ing the discrete condition and substituting into Eq. (11) gives the approximate Schur
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complement
P ≈ P̂ = D−QaD

−1YQ−1
u Z

= QaD
−1
(
DQ−1

a D−YQ−1
u Z

)
.

(13)

The inverse of P̂ requires that the operator

DQ−1
a D−YQ−1

u Z

is explicitly formed (using lumped approximations of the inverse mass matrices) and
“inverted” using one multigrid V-cycle.

4.4 Solution method software used in this study

The multilevel implementation described above is provided by ML47, 17. The approxi-
mate block factorization methods are implemented in the Teko package that is available
through the Trilinos framework21.

5 REPRESENTATIVE RESULTS

5.1 Scaling of DD and fully-coupled AMG preconditioners

The first example problem models an MHD pump that induces flow in a conducting
fluid by applying an external magnetic field in the y-direction and an electric field in
the z-direction40. The domain is Ω = [0, 10] × [−1, 1]. There are no-slip fluid velocity
conditions applied on the upper and lower surfaces with natural boundary conditions
for the system applied at both the inlet and outlet of the domain. On the lower and
upper surfaces a constant external magnetic field B = (0, B0, 0) is applied in the range
of x ∈ [2.5, 7.5] while outside of this range it is zero. A constant electric field, E0

z is
applied in the z-direction. The interaction of these fields produces a Lorentz force that
pulls fluid in from the x = 0 boundary with a parabolic profile, contorts the velocity field
into a common “M” profile for these types of flows22, 50, and then the flow exits with a
parabolic profile. The simple geometry of this problem facilitates scalability studies as
different mesh sizes can be easily generated. A sample of the filled contours of Az and By

are presented in Figure 1.

Figure 1: Contour plots of Az (left) and By (right) for the idealized Faraday conduction MHD pump.

The second example is a transient island coalescence problem that consists of a per-
turbed Harris sheet magnetic field configuration3, 27, 40 that introduces two magnetic is-
lands in the plasma as initial conditions for the island coalescence problem. The structure
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Figure 2: Contour plots for the island coalescence driven magentic reconnection at times t = 0.0 on the
left and 10.0 on the right. The images show isolines of the magnetic potential Az and filled contours of
the current Jz. The formation of the x-point and the thin current sheet is clearly evident.

of this perturbation can be seen in the initial condition plot at time t = 0 of Figure 2
(left) with iso-lines of Az. The combined magnetic field produced by the two magnetic
islands produces Lorentz forces that pull the islands together. For larger resistivities the
x- and o-points monotonically approach each other, for low resistivities fluid-plasma pres-
sure builds up as the islands approach and a sloshing or bouncing of the o-point position
is encountered that leads to lower reconnection rates (for more details on the physics see
e.g.3, 32). The right image in Figure 2 shows an iso-line plot of Az and filled color contours
of the the plasma current Jz during the reconnection event at time, t = 10.0. Clearly
evident is the formation of the x-point between the islands, the development of a thin
current sheet at that same x-point location, and the movement of the center of the islands
(o-points) towards the x-point3, 27.

5.1.1 Weak scaling of steady-state solvers: MHD Faraday conduction pump.

As an illustration of the parallel performance of the one-level additive Schwarz domain
decomposition and multilevel preconditioners, a weak scalability study is presented for a
2D idealized Faraday MHD conduction pump. In this study we consider the weak scaling
of the one-level DD ILU preconditioner for various levels of fill-in, and the multilevel NSA
preconditioner. For this study the 16 processor case solves the problem on a 800 × 80
mesh. The weak scaling study keeps the work per processor fixed as the problem size is
increased.

This study is for a low Reynolds number, Re = ρUL/µ, and magnetic Reynolds num-
ber, Rem = µ0UL/η flow (Re = Rem = 0.7) with a Hartmann number Ha = B0L/

√
µη =

1. In this study, we have taken L = 2, ρ = 1, µ/ρ = η = 1, µ0 = 1. Ez
0 and B0 are then

selected to produce the desired max velocity U to set the Re = Rem and Ha. The Krylov
method is a non-restarted GMRES technique to allow only the parallel scalability of the
preconditioners to be addressed. For the one-level DD preconditioner, an incomplete fac-
torization ILU(k) sub-domain solver was used with k = 1, 3, 7 with an overlap of 2. For
the 3-level preconditioner, the fine and medium meshes use an ILU(1) smoother with 2
levels of overlap and the coarsest problem was solved by the KLU sparse direct solver.

Figure 3 graphically presents the parallel and algorithmic scaling of the one- and three-
level preconditioners for the MHD Faraday pump. Figure 3 (left) summarizes the results
for the average iteration count per Newton step as a function of problem size. As the
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number of unknowns, N (as well as the number of processors, P , in this scaled study),
is increased, the number of iterations to convergence for the one-level schemes increases
significantly: roughly N1/2 in two dimensions. Note that an optimal convergence property,
that is an iteration count independent of problem size, is roughly obtained for the 3-level
preconditioner. On the coarsest level, a serial sparse matrix direct solver, KLU, was used
to factor the coarse matrix. Since the fine grid smoother is highly parallel and the fine grid
work per processor is roughly constant, the cost of producing the coarse grid problem,
and executing the direct solve (KLU) on the increasingly larger coarse grid, causes an
increase in the CPU time for the larger problems. While this loss of CPU time scaling
is non-optimal, it must be pointed out that the 3-level method is still significantly faster
(a factor of about 10–20x) than the corresponding one-level methods. To mitigate this
growth of CPU time for the coarse grid solve, either approximate coarse grid methods
can be used (e.g.41) or more levels could be employed.

Figure 3: Weak scaling results for MHD Faraday pump problem. The scaling of the average number of
iterations per Newton step (left) and the average time per Newton step (right). This time per Newton
step is the sum of the linear solve time and time to construct the Jacobian (about 4.9 seconds). These
results were obtained on a Cray XT3/4 system.

5.1.2 Weak scaling of transient solvers: Driven magnetic reconnection.

A preliminary study of the weak scaling for the graph-based aggressive coarsening
multilevel preconditioner for the fully-implicit transient solution of the island coalescence
problem at a resistivity of η = 10−3 is presented. In this study, we have also taken
ρ = 1, ν = η = 1, µ0 = 1 and using the spacing of the o-points we have L = 1. As in27

these choices imply that the resistivity η = 1/S, where S is the Lundquist number that
is defined as S = µ0LVA/η, with VA = B0/

√
µ0ρ the Alfven velocity. In this case the

Lundquist number, S = 103. The test consists of time steps of size ∆t = 0.1 time units
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with an integration carried out to t = 10.0, the results are averaged over these 100 time
steps. The maximum stiff wave CFL = 51.2 in this case, based on the Alfven wave speed.

Table 3 presents the results for the 2-level PGSA method with an aggregation size of
80. The columns in the table are: average Newton steps per time step, average GMRES
iterations per Newton step, average linear system solve time per Newton step in seconds,
average GMRES iterations per time step, and average linear solve time per time step
(including preconditioner setup time) in seconds.

The multilevel method is seen to limit the growth in the linear iteration count as the
problem size is increased. In this case for an increase in problem size by a factor of 64
the multilevel preconditioner has an increase in iteration count of about a factor of 2.
While the scaling is not optimal with problem size, the increase in the number of linear
iterations per Newton step is gradual with the problem size, and represents a reasonable
step towards a scalable algebraic multilevel method.

Procs Mesh Nunks Newton/ Gmres/ Time/ Gmres/ Time/
∆t Newton Newton ∆t ∆t

1 64× 64 16K 3.9 4.4 2.1 17.2 8.1
4 128× 128 64K 4.6 5.8 2.6 26.7 11.9

16 256× 256 0.25M 4.9 6.3 2.9 30.9 14.2
64 512× 512 1M 6.2 8.8 4.0 54.6 24.6

Table 3: Weak scaling of the block AMG preconditioned Newton-Krylov solver for the stabilized resistive
MHD formulation on the island coalescence problem. The smoother in the PGSA method is an ILU(1)
and it is a V(1,1) cycle and the aggregation size is 80. In this study the linear solver convergence criteria
is 10−3 for each step of the Newton solver.

Next we consider an initial study of the influence of the Lundquist number on the iter-
ation count of the linear solver with the fully-coupled AMG preconditioner on a 512×512
mesh. The results for this study are presented in Table 4. From Table 4 it is clear that
as the dissipation in the system is decreased the convergence rate of the underlying fully-
coupled AMG preconditioner decreases and more iterations are required. In the range
of Lundquist number from 102 to 104 this increase was by a factor of ≈ 3x. This be-
havior might be expected since our current fully-coupled AMG preconditioning approach
is tailored to parabolic and elliptic PDEs. Therefore optimal performance in the higher
Lundquist number regimes, on moderately refined meshes, would be surprising. Never-
theless, the solver has demonstrated to be reasonably robust, even in this regime as is
evidenced by our ability to pursue computations up to S = 105 on appropriately refined
mesh40 . We believe that improving on these results will require the implementation of
physics-based preconditioning ideas, as proposed in5. We are currently pursuing a more
extensive study of the higher Lundquist number behavior of these preconditioners.
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Lundquist Newt/ iter/ prec Advance iter/ Advance
No. ∆t Newt time/N time/N ∆t time/ ∆t

102 5.5 3.6 3.2 7.5 19.8 41.1
103 4.7 6.8 3.3 7.5 32.0 35.4
104 4.3 10.3 3.8 8.1 44.2 34.5

Table 4: Study of the influence of the Lundquist number in the iteration count of the PGSA preconditioner
for mesh of size 512× 512. The multilevel preconditioner is a 2-level method with ILU(3) and 2 levels of
overlap with an aggregation size of 40. Times are in seconds.

5.2 Initial Results for ABF preconditioners

Figure 4: Constant CFL = 52.1 weak scaling for the magnetic reconnection problem on 1, 4, 16, 64 and
256 processors. The thin vertical line near 106 corresponds to ∆t = 0.1

Finally we present a preliminary result comparing the performance of the abstract
block factorization preconditioner presented in Eq. (9), to the aggressive coarsening and
domain decomposition preconditioners. This study of the ABF preconditioner is a weak
scaling study that uses a fixed mesh of size 128 × 128 on each processor, for the 256
processor case there are 16.8M unknowns. In addition for this study we select a fixed
CFL = 51.2 that corresponds to the previous study above. The domain decomposition
preconditioner uses an ILU(1) sub-domain solver with an overlap of 2 and the fully-
coupled ML preconditioner uses a 3 level NSA method with ILU(1) smoother with 2
levels of overlap. The ABF preconditioner uses two different multigrid solvers to perform
the subsolves required by the factorization. For subsolves involving velocity unknowns (in
particular F−1) a NSA method with an ILU(1) smoother with an overlap of 2 is used.
Both the fluid and the magnetic/velocity Schur complements also require a subsolve. For
these a multigrid method, using smoothed aggregation for projection and ILU(1) with
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overlap of 2 as the smoother, is applied.
Fig. 4 presents results from a study of the ABF preconditioner for a Lundquist number

of S = 104. This preliminary study shows at least two trends. First for large times step
sizes, that correspond to ∆t = 0.4 and ∆t = 0.2 for the 128×128 and 256×256 mesh case,
the ML and DD preconditioners appear to be more effective. Based on our preliminary
analysis of the factorization error incurred by the splitting approximation this behavior
may be able to be explained by further analysis. In addition, it should be noted that
these time step sizes are probably too large as the time-scale for the reconnection event
essentially requires time steps that are on the order of 0.1 time units, or less, as used in
the study above. The second clear trend in this preliminary data is a bit more interesting.
That is that the iteration count for the ABF preconditioner is decreasing as a function of
the mesh spacing (time step size as well since this is a constant CFL study). Clearly this
behavior is in contrast to the DD and fully-coupled ML preconditioners. We are currently
pursuing more extensive studies of the ABF preconditioner to more clearly understand
this interesting behavior.

6 CONCLUSIONS

This brief paper has presented a preliminary performance study of an unstructured
fully-implicit stabilized FE formulation for 2D incompressible reduced resistive MHD. The
solution methods used in this formulation are based on a fully-coupled Newton-Krylov
approach employing a fully-coupled AMG technique and a new ABF as preconditioners.
As an illustration of the robustness, scalability, and efficiency of the solution techniques,
performance results have been presented for a MHD duct flow, and a magnetic island
coalescence problem. The preliminary efficiency and scalability results of this study are
encouraging. In particular, the results clearly demonstrate the improved convergence
properties of block aggressive coarsening, fully-coupled parallel multilevel precondition-
ers over more standard parallel additive-Schwarz domain-decomposition methods. In
addition, the first result for the ABF preconditioner appears encouraging although this
methods needs significantly more analysis and evaluation. Future work will focus on
more extensive studies of these preconditioning ideas to deal more effectively with the
large Lundquist number regime, and the extension of this work to a full 3D compressible
resistive MHD model.
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