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Abstract. We recall some general guidelines for implicit and semi-implicit time in-
tegration schemes, using early examples of (semi-)implicit MHD tests1,2. We point out
their means to handle the Jacobian evaluation, and the solution strategy for the linear
system solves, since implicit schemes typically require the solution of large linear systems
containing the Jacobian matrix.

As more recent, specific applications, we discuss parallel, grid-adaptive computations
that use semi-implicit treatments for handling local source terms. They cover idealized
stellar outflow models with local radiative losses, which demonstrate how grid-adaptivity
as well as implicit source treatments may both be inevitable3. Our second application com-
bines optically thin loss terms with thermal conduction, addressing the dynamic formation
of a prominence in the solar, magnetized corona. Assuming a given magnetic loop geome-
try, this simulation solves for the plasma dynamics under the influence of gravity, pressure
gradients, thermal conduction, optically thin radiative losses and an assumed background
heating. These applications illustrate the basic building blocks required for future, even
more realistic MHD simulations.
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1 INTRODUCTION

Magnetohydrodynamics (MHD) governs the large-scale behaviour of the fourth state of
matter, where ions and electrons collectively behave in a fluid-like, plasma state. In ideal
MHD, where we deal with pure conservation laws (mass, momentum, total energy and
magnetic flux) ruling the dynamics of plasmas, the existence of three distinct wave speeds
and types can already pose severe challenges to the traditional explicit time stepping
approaches. Such explicit methods to time-advance the discretized PDEs on a grid in-
variably connect the temporal advance ∆t with the instantaneously smallest grid spacing
∆x by the overall largest wave speed cmax through the Courant-Friedrichs-Lewy condi-
tion, expressing ∆t < ∆x/cmax. The geometry of the magnetic configuration, which due
to the divergence-free condition on the magnetic field B is of a flux-tubular variety, then
combines to introduce potentially very disparate timescales for Alfvén versus slow/fast
magnetoacoustic waves. These speeds also depend on the relative importance of the local
field B as measured with the ratio of plasma to magnetic pressure β = 2p/B2, and it may
turn out prohibitive to face the restriction on the timestep invoked by the fast magneto-
acoustic wave, when e.g. only a steady-state solution to the equations is of interest. The
problem becomes even more pronounced when wanting to time-integrate the dynamics
of plasmas where additionally visco-resistive effects are at play, since diffusion like terms
would otherwise introduce a stability restriction of the form ∆t < (∆x)2/dmax, with dmax

a diffusion-related transport coefficient (such as resistivity, viscosity, thermal conduction).
In all such cases, one can resort to implicit time integration strategies, which although
algorithmically more involved, can become computationally advantageous as they lift the
stability constraint on the allowed time step ∆t (however, the use of larger timesteps may
impact accuracy when time evolutions are of interest). Many variants of (semi-)implicit
treatments have been demonstrated on plasma dynamical problems, and in this contri-
bution, we briefly recall two typical, early examples of implicit strategies in an MHD
context. These relate to an effort in the late nineties1,2 to develop a versatile software
tool for solving systems of (near-)conservation laws, encompassing in particular hydro and
MHD modules with optional source terms. Meanwhile, this ‘Versatile Advection Code’
(VAC4) has been applied to a fair variety of astrophysical to laboratory motivated plasma
studies. We also provide an update on a contemporary follow-up to this code, the MPI-
AMRVAC software5 incorporating a parallelized block-adaptive strategy for classical up
to relativistic hydro and MHD systems. While this latest code deliberately restricted time
stepping strategies to (grid-level dependent) shock-capturing explicit schemes, we report
on recent applications where in essence hydrodynamical evolutions use semi-implicit treat-
ments for selected source terms. The paper concludes with an outlook to future challenges
where (semi-)implicit strategies will be invaluable.
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2 EARLY TESTS FOR IMPLICIT MHD

The MHD equations can be written in the form

∂t
~U = ~R(~U) = −

∑
i

∂i
~Fi(~U) + ~S(~U, ∂i

~U, ∂i∂j
~U,x, t), (1)

where t is the time, i and j indicate components of the spatial coordinate x, while ~U
denotes the vector of conservative variables (mass, momentum, total energy density and

B). The right hand side ~R is the residual, which for steady-state problems must be made

to vanish. It contains the sources ~S and the divergence of fluxes joined in ~Fi.

Figure 1: Steady, magnetized bow shock about a conducting cylinder, taken from Tóth et al.1. Left
panel: field lines and a greyscale contour plot of the density. Right panels: The (normalized) residual
evolution versus CFL-limited timesteps (top) and versus implicit pseudosteps (bottom).

In case one is interested in a steady-state solution, one can use a fully implicit backward
Euler scheme, which after linearization amounts to solving Î

∆t
− ∂ ~Rimpl

∂~U

 (~Un+1 − ~Un
)

= ~R(~Un). (2)

Note that the Jacobian matrix ∂ ~Rimpl/∂~U may exploit a different discretization for ~Rimpl

than the typically second order evaluation for the residual ~R (and that one may also
consider semi-implicit variants which only treat some variables, or sources, implicitly).
As a concrete example, we recall the computation of a magnetized bow shock flow about
a perfectly conducting cylinder1. When we take the plasma beta of the upstream flow
β = 2 and take a horizontal flow at Alfvén mach number MA = |vx|

√
ρ/B = 4, the flow

settles into a steady pattern shown in Figure 1. The problem is solved on a polar grid,
and the convergence history of both explicit and implicit strategies (which we refer to as
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pseudo-timestepping) for obtaining the steady state are shown at right in Figure 1. The
convergence is here expressed as a relative change from one (pseudo-)time level to the
next, taking all conservative variables into account. In this steady problem, the implicit
strategy uses a first order approximation in ~Rimpl which directly corresponds to a low order
Total Variation Diminishing Lax-Friedrichs (TVDLF) scheme. The Jacobian is block
penta-diagonal, and an incomplete LU-decomposition based preconditioner is exploited
to accelerate the convergence of the iterative, bi-conjugate gradient linear system solver.

Figure 2: Evolution of a planar magnetic reconnection problem1. A localized resistive layer (lower left
corner) controls the evolution, shown by means of field lines, velocity field arrows, and a greyscale plot
of the current density.

While the previous example focused on a steady-state computation, a strategy for im-
plicit, time-accurate computations was demonstrated on a planar resistive MHD problem
as well1. The second order accurate, 3-level Backward Differentiation Formula writes as

~Un+1 = ~Un + ∆t ~R(~Un) +
1

3
∆t

 ~Un − ~Un−1

∆t
− ~R(~Un)


+

2

3
∆t

[
~Rimpl(~U

n+1)− ~Rimpl(~U
n)
]
, (3)

and by restricting the Jacobian appearing when linearizing ~Rimpl(~U
n+1) to the ideal MHD

terms, one can again use the first order variant of the TVDLF scheme while dealing with
the larger-stencil, resistive sources explicitly (hence the distinction between ~R and ~Rimpl).
This was done to obtain the evolution towards a shock-dominated, fast reconnection
configuration shown in Figure 2. The figure shows how a small diffusion region, by
symmetry located in the lower left corner of the domain, actually controls the dynamical
adjustment of a current layer to a Petschek-type configuration: field lines reconnect and
flux is expelled from the small diffusion region at Alfvénic velocities along the symmetry
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axis. A pair of slow magnetosonic shocks forms across which the plasma is diverted and
accelerated.

3 LOCAL SOURCE TERM TREATMENTS

3.1 Current code status

The VAC code from the examples of the previous section is still in use today in both
laboratory and astrophysical communities: Garćıa-Mart́ınez and Farengo6 recently ap-
plied the code to study the relaxation of spheromak, kink-unstable MHD equilibria in 3D,
visco-resistive, isothermal MHD simulations. Soenen et al.7 demonstrated numerically in
axisymmetric, ideal MHD that a series of coronal mass ejections (CMEs) can originate
from an initial triple arcade structure in the solar corona, energized by shearing the ar-
cade system at the solar surface. Both these efforts use a suitably adapted version of the
community code, and employ explicit schemes throughout: the effects of resistivity in the
spheromak study is important but the instability timescale is in essence found from ideal
MHD, forcing an explicit treatment. The latter, CME investigation uses the common
approach that reconnection events can be amenable to numerical modeling, even if only
numerical resistivity (i.e. truncation level errors) can account for it.

As a modern descendant of the VAC code, the MPI-AMRVAC code5 has meanwhile
evolved to a similarly versatile software to handle systems of the form (1) in any dimen-
sionality in a parallelized, grid-adaptive framework. The grid-adaptivity is currently of a
block-adaptive kind, where in 3D, gridblocks get subdivided in 8 blocks all using as basic
gridelement (∆x/2)(∆y/2)(∆z/2). The finer meshed gridblocks can also be dynamically
removed if need be, with refine and coarsen actions depending on a combination of user-
and application-specific (de-)refinement criteria as well as automated error estimators,
exploiting approximations to local second derivatives. The parallelization is achieved by
means of a space-filling Morton (Z-order) curve to load-balance the simulation dynami-
cally, trying to keep the number of blocks per processor optimally distributed. The actual
systems of equations precoded in MPI-AMRVAC include pure advection, the Euler equa-
tions, special relativistic gas dynamics, ideal and resistive MHD, and special relativistic
ideal MHD. The latest applications concentrate on relativistic astrophysical flows8, and
fully exploit the Adaptive Mesh Refinement (AMR) as well as the availability of several
shock-capturing, explicit discretization schemes. In what follows, we give recent examples
where the AMR approach has been combined with implicit source term treatments, in
particular incorporating the effects of optically thin radiative losses, ultimately combined
with thermal conduction.

3.2 Radiative losses and the need for AMR

In a fair variety of astrophysical applications, one needs to account for energy losses
through radiative processes. In the simplest case, these represent local energy loss terms
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Figure 3: Stellar wind simulations with local radiative loss terms3. Left panel: a spherically symmetric
simulation, comparing an exact with an implicit solution. Right: a 2D simulation, showing clockwise
from bottom right: grid, luminosity, density and temperature.

proportionate to the density squared, in a form like

∂e

∂t
+ ∇ · ((e + p)v) = − ρ2Λ(T ). (4)

The above form is adequate for gas dynamical situations where the total energy density is
derived from pressure p and density ρ through e = 1

2
ρv2 + p

(γ−1)
, but a very similar (and

identical source) term applies for the MHD case as well. Due to its local dependence, the
term is easily handled semi-implicitly, where only the source addition happens implicitly,
introducing a Newton-Raphson procedure. What is particular for such optically thin
radiative losses, is the fact that the cooling function Λ(T ) is of a tabulated variety, with
strong variations in certain temperature intervals, needing suitable interpolation formulae.
As the cooling timescale, set by

τcool ∼
p

ρ2Λ(T )
, (5)

can be much shorter than the one associated with sound wave propagation, an implicit
treatment is warranted. In van Marle and Keppens3, we recently demonstrated the need
for adequate source term treatments in highly idealized stellar wind expansion studies.
In a 1D spherical hydro flow we impose at the lower radial boundary a mass loss rate
and speed typical for a supersonic wind of a massive star. This high speed, low density
spherical outflow impacts a uniform interstellar medium (ISM), and Figure 3, left panel
shows the density profile at a representative instant in time. One notes from left to right
the wind profile through which density decreases with radius, the reverse shock transition
to shocked wind matter, the contact discontinuity, the swept-up, shocked ISM material
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occupying a thin shell of high density matter, up to the foreward shock transition to the
uniform ISM. The figure compares two means for incorporating the cooling source term,
an exact method against an implicit treatment, which are seen to coincide. The radiative
losses in this simulation have dynamically influenced the evolution, as the shocked ISM
shell is significantly narrowed due to the energy losses, and this in turn translates to a
need for grid-adaptivity (4 levels where employed in Figure 3). The right panel gives an
impression of a similar, two-dimensional result, where the cooled, shocked shell is distorted
due to Rayleigh-Taylor instabilities that originated at the contact discontinuity.

3.3 Prominence formation

A final example of more recent work where semi-implicit, source term treatments have
been used in parallel, grid-adaptive studies is from an ongoing study targeting the forma-
tion of prominence condensations in the solar atmosphere. These prominences represent
material that is 100 times denser and cooler than the surrounding plasma in the solar
corona, which in turn is heated to million degrees Kelvin. They consistently form in
‘dipped’ magnetic configurations, i.e. in upwardly curved magnetic loops, such that the
upward Lorentz force can balance the pull of gravity on this dense material. Observations
show that they appear to lie above magnetic neutral lines seperating magnetic field regions
of opposite polarity, and that the magnetic field is primarily aligned with the prominence
axis. These observational facts, along with the dynamical dominance of the magnetic field
in the solar corona (low β) justifies the use of a 1D model where the field configuration is
given, i.e. the magnetic loop is then in essence a rigid pipe along which we solve for the
plasma dynamics. The study then merely focuses on the prevailing thermodynamic con-
ditions along a loop from photospheric regions all the way through the corona, and aims
to identify the thermal instability process as the ultimate cause for prominence formation.

Figure 4: Prominence formation along a dipped magnetic loop. The assumed magnetic loop shape is
shown, with the density distribution in a colorscale along the loop. A prominence has formed by thermal
instability in the dipped region, and has already grown to a relatively large size in the right panel.

The 1D equations consider mass conservation, Newton’s law where pressure gradients
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as well as loop-projected gravity is taken along, and the energy equation considered then
takes the form

∂e

∂t
+

∂

∂s
((e + p)v) = ρvg‖ +

∂

∂s

(
κT 5/2∂T

∂s

)
+ ρh(s, t)− ρ2Λ(T ). (6)

Note how we now solve for density ρ(s, t), total energy density e(s, t) and velocity v(s, t)
along the loop with fieldline projected gravity g‖ and the inclusion of thermal conduction
with conduction coefficient κ. A prescribed (spatio-temporal) background heating func-
tion enters through ρh(s, t), which we fix in a variety of ways. The initial condition for our
study of prominence formation then first relaxes an initial hydrostatic atmosphere with
prescribed temperature variation to the one expressing full thermodynamic balance along
the loop. The inclusion of thermal conduction and heating causes this relaxed endstate to
closely follow the observed dramatic changeover in temperature when going from photo-
sphere/chromosphere to solar coronal regions, with a markedly sharp rise in temperature
at the transition region (from a few 1000 Kelvin to million degrees). From this relaxed
state, we then vary the heating h(s, t) and follow the formation of a thermal condensation
once the isobaric criterion, given by

∂

∂T
(ρΛ(T )− h)

∣∣∣∣∣
p

< 0, (7)

gets violated locally. The AMR is vital to capture the rapid, extremely local nature of this
thermal instability accurately. Again, the condensation process is ultimately connected to
the detailed tabulated variation of optically thin radiative losses in Λ(T ). The simulation
uses the same implicit approach for the local loss term as in the previous example, and
also treats the thermal conduction term implicitly. This latter source is discretely handled
by solving a tridiagonal system for the new temperature values T n+1

i where i denotes
the grid point index. This system writes for the update in internal energy the discrete
approximation

∂[ρT/(γ − 1)]

∂t
=

∂

∂s

(
κT 5/2∂T

∂s

)
⇒ aT n+1

i−1 + (c− a− b)T n+1
i + bT n+1

i+1 = cT n
i

where a ≡ −κ

(√
T n

i−1T
n
i

)2.5

(∆s)2
, b ≡ −κ

(√
T n

i+1T
n
i

)2.5

(∆s)2
,

while c ≡ ρn
i

(γ − 1)∆t
.

On each block of the AMR hierarchy, we loosely couple the grid blocks using previous
time level ghost cell values, or by fixing the previous gradient there. On selected tests,
this was found to adequately handle the otherwise stiff source term.
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4 CONCLUSIONS AND OUTLOOK

In future applications, we target multi-dimensional MHD problems where the avail-
ability of automated grid-adaptation and implicit source term treatments is necessary. A
concrete example is the extension of the prominence formation modeling to its realistic,
3D manifestation. This kind of modeling will require highly scalable parallel code, where
all aspects illustrated above return: we will need to first evolve the 3D background struc-
ture to a steady configuration, in which radiative losses, thermal conduction and heating
terms play key roles. This evolution towards steady state is likely to involve reconnection
processes, suggested by observations. To follow the spontaneous formation of a promi-
nence by thermal instability, high effective resolution through AMR will be warranted.
The implicit treatment of thermal conduction in multi-D, block adaptive simulations will
thereby be an essential ingredient.
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