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ABSTRACT

We  present  an  overview of  recent  developments  of  a  projection  approach  for  implementing  the 
immersed  boundary method (e.g.  [1])  in  a  traditional  finite-volume,  fractional-step  algorithm for 
incompressible flow. Boundary forces and pressure are regarded as Lagrange multipliers that enable 
the no-slip and divergence-free constraints to be satisfied to arbitrary precision with no associated 
time-step  restrictions  [2].  For  rigid  surfaces,  the  algorithm  can  be  formulated  with  a  discrete 
streamfunction, multi-domain approach that provides for a fast algorithm and an FFT-based Poisson 
equation solution [3]. The method has been verified and validated by solving a variety of stationary 
and  moving  rigid  surface  problems;  we  provide  examples  from three-dimensional  bluff  bodies, 
flapping wings, vortex-induced vibration, and the collision of a sphere with a planar wall.

Figure 1: Flow (left-to-right) over an inclined flat plate with an aspect ratio of 2 (= 30º, Re = 300): left, natural 
flow; center, mid-span actuation; right, trailing edge actuation. For the actuated cases, the (rms) momentum 
coefficient is 1%. The top row shows isocontours of the vorticity norm and the Q-value to highlight vortical 
structures, the bottom row shows the corresponding streamlines and pressure contours at a mid-span plane. The 
actuated cases show a strengthening of the tip vortices near the wing and a concentration and deflection toward 
the plate of the leading-edge vortex. The lift is increased by about 75% in both actuated flows compared to the 
natural flow.

Next, we discuss application of the method to low-Reynolds number aerodynamics (for micro air 
vehicles),  and,  in  particular,  active  and  closed-loop  control  of  the  leading-edge  vortex  (LEV) 
associated with separated flows on two and three-dimensional airfoils with different aspect ratios, 
planforms, and angle-of-attack. Some two-dimensional model problems are used to investigate how 
feedback can be used to phase-lock an actuation signal to the measured forces, in order to synchronize 
(phase-lock) vortex shedding. Strategies are developed to optimize the lift achieved over a cycle of 
actuation, by modification of the phase between actuation and the force [4].  Idealized body-force 
actuators are also applied to three-dimensional, flat-plate airfoils. For certain actuator locations and 
directions of momentum injection, the actuation can have a strong, stabilizing effect on the leading-
edge vortex structure (figure 1), and produce lift enhancement of similar magnitude to that which 
occurs in the dynamic-stall vortex, or which is associated with the LEV during impulsively-started 
motion [5].
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