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Abstract. An unstructured grid-based, parallel free-surface flow solver has been
extended to account for sinkage and trim effects in the calculation of steady ship waves.
The overall scheme of the solver combines a finite-element, equal-order, projection-
type three-dimensional incompressible flow solver with a finite element, two-dimensional
advection equation solver for the free surface equation. The sinkage and trim, wave
profiles, and wave drag computed using the present approach are in good agreement
with experimental measurements for two hull forms at a wide range of Froude numbers.
Numerical predictions indicate significant differences between the wave drag for a ship
fixed in at-rest position and free to sink and trim, in agreement with experimental
observations.
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1 INTRODUCTION

A steadily advancing surface ship experiences sinkage and trim, notably at high
Froude numbers, due to the hydrodynamic forces acting on the ship hull. Sinkage and
trim effects are also observed in towing tank experiments if the ship model is not fixed
to the towing carriage. A ship model free to sink and trim can experience an increase
in wave resistance. Large trim changes may also affect the performance of a ship. For
example, bow-down trim affects the taking off of airplanes from a carrier. Sinkage and
trim in very shallow water may set an upper limit to the speed at which ships can
operate without touching bottom. Therefore, it is of practical importance to include
sinkage and trim effects in the calculation of steady ship waves.

In recent years, the advent of advanced numerical schemes for the Euler and Navier-
Stokes equations has enabled more realistic predictions of wave resistance. In these
schemes, a three-dimensional, i.e. a volumetric incompressible flow solver, is coupled
with a free surface equation given by the kinematic boundary condition. The velocities
obtained at the free surface from the three-dimensional incompressible flow solver are
used in the free surface solver to update the free surface height. This new height changes
the (prescribed) pressure at the free surface for the three-dimensional incompressible
flow solver, thereby closing the loop. The free surface height also serves as the basis for
the mesh motion.

There exist two main types of incompressible flow solvers. The first class is based on
projection schemes1−13. A velocity field is predicted in a first step. The conservation
of mass is enforced in a second step by solving a Poisson equation, which results in a
new pressure. Finally, the velocity field is updated using this new pressure. The second
class is based on artificial compressibility schemes14−25. The infinite speed of sound of
the incompressible medium is reduced to a finite number by adding a time derivative of
the pressure to the divergence equation. This approach enables the effective use of all
the techniques developed for compressible flow simulation, such as limitors, upwind
differencing, residual smoothing, multigrid acceleration, etc. At steady state, the
time derivative in the divergence equation vanishes, yielding the proper incompressible
solution. Both families of solvers have been used successfully to develop computer codes
for free-surface prediction, including total ship resistance or wave resistance. However,
most calculations so far consider the case in which the ship is fixed at either the at-rest
position or a prescribed sunk and trimmed position given by model tests.

Due to the significant effects of sinkage and trim on resistance and performance,
dynamic sinkage and trim should be incorporated in calculations of steady ship waves.
Consideration of sinkage and trim also provides a better way of validating resistance
data since many experiments are performed for ship models free to sink and trim. The
general objective of this work is therefore the development of a more efficient method
to predict steady ship waves while taking sinkage and trim into account.

During the last three years, an unstructured grid-based, parallel free-surface flow
solver has been developed for solving nonlinear ship-wave-resistance problems in terms
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of the Euler or Reynolds-Averaged Navier Stokes (RANS) formulation for the case in
which the ship is fixed10−13. The overall scheme combines a finite-element, equal-order,
projection-type three-dimensional incompressible flow solver with a finite element, two-
dimensional advection equation solver for the free surface equation. This free-surface
flow solver is extended in the present paper to incorporate dynamic sinkage and trim
in the steady wave calculation. As the first step of the study, the Euler formulation is
employed here. The solution procedure consists of the following steps.
1) A steady flow simulation is performed for the case in which the ship is fixed at the

initial at-rest position.
2) The ship model is then moved to a predicted sunk and trimmed position. The grids

on the hull and in the vicinity of the hull are rigidized during the hull movement.
3) A steady flow simulation is performed again while the hull is fixed at the predicted

sunk and trimmed position. A converged free surface is obtained at the end of the
present step for this ship model position.

The second and third steps are repeated until a converged sunk and trimmed position is
reached, i.e. all the forces and moments that act upon the ship model are in equilibrium.
The solution from the previous iteration serves as the initial condition to speed up the
steady flow simulation.

An unstructured grid is used in the present finite element method to enhance
geometry flexibility and to speed up the initial modeling time. Specifically, a
triangulation is first generated directly from the offset data. This triangulation is
subsequently used to define the hull surface in a discrete manner. The surface definition
of the complete computational domain consists of discrete (hull) and analytical surface
patches. An automatic unstructured grid generator based on the advancing front
method is used to generate triangular surface grids and tetrahedral volume grids.
In addition, the unstructured grid generator is linked to the flow solver, so that an
automatic remeshing can easily be performed to simulate fully nonlinear ship waves.

The present paper is organized as follows: Section 2 summarizes the equations used
to describe the flow and free surface, and the solution procedure of the Euler solver;
Section 3 describes the approach used for evaluating sinkage and trim; Section 4 gives
a brief review of some numerical aspects, including the techniques used in unstructured
grid generation and mesh update; some examples are shown in Section 5; finally, some
conclusions are given in Section 6.

2 EULER SOLVER

Figure 1 shows the reference frame and ship model location used in the paper. A
Cartesian coordinate system Oxyz is fixed to the ship model with the origin inside the
hull on the mean free surface. The z direction is positive upwards, y is positive towards
the starboard side and x is positive in the aft direction. The free stream velocity vector
is parallel to the x axis and points in the same direction.
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Figure 1. Coordinate system used

2.1 Flowfield equations

The equations solved are the incompressible Euler equations given, in non-
dimensional form, by the conservation of mass and momentum:

∇ · v = 0 , (1)

v,t + v · ∇v + ∇Ψ = 0 , (2)

where v = (u, v, w) denotes the velocity vector and Ψ the pressure plus hydrostatic
pressure:

Ψ = p +
z

Fr2 , F r =
|v∞|√
g · L . (3)

A particle on the free surface must remain there, which implies that the free surface
elevation β obeys the advection equation

β,t + uβ,x + vβ,y = w . (4)

The boundary conditions are as follows:

a) Inflow Plane: At the inflow plane, the velocity, pressure and free surface height are
prescribed:

v = (1, 0, 0) , Ψ = 0 , β = 0 . (5)

b) Exit Plane: At the exit plane, none of the quantities are prescribed. The natural
Neumann condition for the pressure and extrapolation boundary conditions for the
velocities and free surface height are imposed automatically by the numerical scheme
used.

c) Free Surface: At the free surface, the pressure p is prescribed as p = 0, implying that
Ψ is given by

Ψ = βFr−2 . (6)
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Note that the kinematic free surface boundary condition is given by Eqn.(4).

d) Bottom: At the bottom, one may either impose the boundary condition for a
- Wall: vanishing normal velocity, Neumann condition for the pressure, or
- Infinite Depth: prescribed pressure, no boundary conditions for the velocities.

e) Ship Hull: On the ship hull, the normal velocity must vanish, i.e.

v · n = 0 , (7)

where n is the normal to the hull.

f) Side Walls: On the side walls of the computational domain, we impose the same
conditions as for the hull, i.e. vanishing normal velocity.

2.2 Solution procedure

For the solution of the three-dimensional incompressible flow equations, a pressure
projection scheme is used. The free surface equation (4) is treated as a standard scalar
advection equation with source terms for the x, y plane. One complete timestep of the
Euler solver consists of the following steps:
1) Given the boundary conditions for the pressure Ψ, update the solution in the three-

dimensional fluid mesh (velocities and pressures);
2) Extract the velocity vector v = (u, v, w) at the free surface and transfer it to the

two-dimensional free surface module;
3) Given the velocity field, update the free surface β;
4) Transfer back the new free surface β to the three-dimensional fluid mesh, and impose

new boundary conditions for the pressure Ψ.
For steady-state applications, the fluid and free surface domains are updated using

local timesteps. This allows some room for variants that may converge faster to the
final solution, e.g. n steps of the fluid followed by m steps of the free surface, complete
convergence of the free surface between fluid updates, etc. Our preference for steady-
state applications is to use an equivalent ‘time-interval’ ratio between fluid and free
surface of 1:8, e.g. a Courant-nr. of Cf = 0.25 for the fluid and Cs = 2.0 for the free
surface.

The formulation of the numerical procedure is based on a three-dimensional finite
element method for the flow variables (u, v, w, ψ), coupled to a two-dimensional finite
element method for the free surface evolution variable (β). The computational domain is
represented by an unstructured assembly of four-noded tetrahedral elements. The faces
on the free surface are extracted from the three-dimensional mesh and renumbered
locally to obtain a two-dimensional triangular finite element mesh in x, y. A detailed
description of the numerical solution procedure can be found in authors’ previous
work10−13.

The Euler solver has been optimized for efficient use of parallel computer hardware.
The solver allows steady wave predictions for a fixed hull model using approximately
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half a million tetrahedral elements in less than an hour on widely available machines,
e.g. the SGI Origin 2000 with 4 processors.

3 EVALUATION OF SINKAGE AND TRIM

The procedure used to compute sinkage and trim is now summarized.
1) The hull model is first considered in its at-rest position. An automatic unstructured

grid generator based on the advancing front technique is used to generate a surface
mesh and a volume mesh. The x-coordinate of the center of gravity is determined
from static equilibrium. A steady flow simulation is performed with the hull in this
initial position.

2) The net heave force and trim moment acting on the hull are calculated from the
previous converged solution. The sinkage and trim corrections required by the
equilibrium of this force and moment are evaluated. The hull model is repositioned
and the grids are moved accordingly. Specifically, three types of grid movements are
considered. One type consists of the grids on the hull and in the vicinity of the hull.
These near-field grids are moved rigidly with the hull. Another type consists of the
grids far away from the hull. These far-field grids are not moved. Finally, the third
type of grids consists of the remainder of the grids. These intermediate grids are
moved smoothly in order to minimize mesh distortions27 .

3) A steady flow simulation is performed again while the hull model is fixed at the
predicted sunk and trimmed position. A converged free surface is obtained for
this given hull-model position at the end of the present step. The solution from
the previous iteration is used as the initial condition to speed up the steady flow
simulation.

The second and third steps are repeated until a converged sunk and trimmed position
is obtained, i.e. until the net heave force and trim moment vanish.

The sinkage and trim corrections are expressed in terms of the net heave force and
trim moment using the relations

∆H =
L

ρgAw
0

, (8)

∆α =
M

ρgAw
2

. (9)

Here ∆H is the correction of the sinkage at the center of gravity, ∆α is the trim angle
correction, L and M are the net heave force and trim moment, Aw

0 is the waterplane
area, and Aw

2 is the corresponding moment of inertia about the y axis. The heave force
and trim moment are defined in terms of the pressure p, which is obtained explicitly in
the Euler solver. The pressure is assumed to be constatnt within each triangular face
on the hull in the pressure integration since the mesh on the hull is very fine.

6
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4 NUMERICAL ASPECTS

4.1 Unstructured grid generation

The discretization of a general three-dimensional computational domain into an
unstructured assembly of tetrahedra is accomplished by means of an advancing front grid
generation procedure26. This procedure requires that the geometry of the computational
domain be defined in terms of an assembly of surface patches, and that the spatial
variation of element size and shape be prescribed. The first step in the process is
the triangulation of the computational boundary surfaces. The assembly of resulting
triangles forms the initial front for the three-dimensional grid generation process. The
advancing front method is then used to fill the computational domain with tetrahedra,
which are generated so as to meet a user-prescribed distribution of element size and
shape.

Both analytical surface patches (planes, Coon’s patches etc.) and discrete surface
patches (defined by a surface triangulation) are used to describe the present
computational domain boundaries, which consist of the hull surface, free surface, inflow
plane, exit plane and bottom plane. Specifically, the preprocessor FECAD first reads
in the hull offset data. A triangulation is then generated from the offset data. This
triangulation is subsequently used to define the hull surface in a discrete manner. The
rest of the boundary surfaces are defined analytically.

The desired element size and shape are prescribed via background grids and sources.
The computational domain is covered by a coarse background grid of tetrahedral
elements. The desired element size and shape are then specified at the nodes of this
background grid. During grid generation, the local element size and shape are obtained
using linear interpolation. In addition, both line and surface sources are used on the hull
surface and the free surface to further define the element size. The sources on the hull
surface ensure the generation of a finer mesh to accurately capture the hull geometry
and the complex flow in the bow and stern regions. The sources on the free surface
yield a finer mesh in the Kelvin wave pattern region.

4.2 Mesh update procedure

Previous work by Hino16,22 and Farmer et al.17 marched the solution in time until
steady state was reached. At each timestep, a volume update was followed by a
free surface update. The repositioning of points at each timestep implies a complete
recalculation of geometrical parameters, and interrogation of the CAD information
defining the surface. In our case, this approach would double CPU requirements.
For this reason, when solving steady-state problems, we do not move the grid at each
timestep, but only change the pressure boundary condition after each update of the free
surface β.

An initial steady-flow solution is first obtained without moving the grid. A predicted
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free surface elevation is then used to define the intersection curve of the free surface
with the hull and the symmetry plane y = 0. Next, the free surface is updated using the
previously-computed intersection curve, and a corresponding updated mesh is generated.
A steady flow calculation is again performed using the new mesh, first without moving
the grids and subsequently updating the mesh every 100-250 timesteps. This procedure
ensures minimum mesh movements and thereby minimizes the costs associated with
geometry recalculations and grid repositioning along surfaces.

As explained in section 3, the hull model is repositioned in accordance with the net
heave force and trim moment acting on the hull, and grids are moved accordingly. The
solution for the hull in the previous predicted sunk and trimmed position are used as
the initial condition to speed up the steady flow simulation for the hull model at the
new position. During subsequent steady flow simulations, the mesh is updated every
100-250 timesteps. This procedure is repeated until convergence of the sinkage and
trim is obtained. At most four iterations are required to obtain a converged steady flow
solution for a ship free to sink and trim.

5 NUMERICAL RESULTS

The solution algorithm outlined in the preceding sections has been applied to the
prediction of sinkage and trim for two hull models at a wide range of Froude numbers
(five Froude numbers for each hull model). The wave drag was computed by integrating
the pressure over the wetted surface. All simulations were run on a 128-processor R-
10000 SGI Origin 2000 in shared-memory mode, using a maximum of 8 processors per
individual run.

The first case considered is the well-known Wigley hull model defined by the analytical
formula:

y =
B

2
·
[
1 − 4x2

]
·
[
1 −

(
z

D

)2
]

, (10)

where B and D are the nondimensional beam and the draft of the ship at still water.
For the case considered here, we have D = 0.0625 and B = 0.1. A fine triangulation
of the surface given by Eqn.(10) is first generated. This triangulation is subsequently
used to define the hull in a discrete manner. The surface definition of the complete
computational domain consists of discrete (hull) and analytical surface patches. The
mesh consists of 356,641 tetrahedral elements, 67,395 points and 13,398 boundary
points. The free surface has 14,432 triangular elements and 7,445 points. Five Froude
numbers, Fr = 0.177, 0.25, 0.316, 0.374, 0.408, are considered for both model fixed and
model free to sink and trim. Figure 2a shows part of the initial surface grids for the
Wigley hull model.
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Figure 2a. Initial surface grids for Wigley hull model

The second case considered is the Series 60, Cb = 0.6 hull model. A triangulation is
first generated from the offset data provided by the DTMB. This triangulation (10,000
triangles) is subsequently used to define the hull in a discrete manner. The surface
definition of the complete computational domain consists of discrete (hull) and analytical
surface patches. The mesh consists of 343,212 tetrahedral elements, 66,256 points and
16,061 boundary points. The free surface has 15,151 triangular elements and 7,836
points. Five Froude numbers, Fr = 0.18, 0.25, 0.32, 0.3682, 0.388, are considered for
both model fixed and model free to sink and trim. Figure 2b shows part of the initial
surface grids for the Series 60 hull model.

The computed sinkage s and trim t are defined in accordance with the experimental
data as

s = (∆dF + ∆dA)/Lpp ,

t = (dA − dF )/Lpp ,

where dF and dA are drafts at forward and aft perpendiculars, Lpp is the distance
between forward and aft perpendiculars, ∆dF and ∆dA are the change of drafts at
forward and aft perpendiculars. A positive value of ∆dF or ∆dA corresponds to an
increase of the draft from its at-rest position. Therefore, a positive sinkage s is defined
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as a vertical displacement in the downward direction and a positive trim t corresponds
to a bow-up rotation.

Figure 2b. Initial surface grids for Series 60 hull model

Numerical results for the Wigley hull model, including sinkage and trim, wave drag
coefficient, wave profiles, are compared with the experimental measurements conducted
at the University of Tokyo (UT). Numerical results for the Series 60 hull model are
compared with the experimental measurements conducted at the University of Tokyo
(UT), Ishikawajima-Harima Heavy Industries Co., Ltd. (IHHI), and the Ship Research
Station of the Korea Institute of Machinery and Metals (SRS).

Figures 3a and 3b depict the convergence of the computed sinkage h and trim t
with respect to the number of iterations for the Wigley hull model and the Series 60
hull model, respectively. Convergence for both models may be seen to be very fast.
In practice, two or even one iterations are sufficient. Figures 4a and 4b respectively
present a comparison of the computed sinkage and trim for the Wigley hull model and
the Series 60 hull model with experimental data. The numerical predictions for both
models are in satisfactory agreement with the experimental data for both sinkage and
trim. These two figures also show that sinkage and trim are most important at high
speed.

Figures 5a and 5b similarly show a comparison of the computed wave drag coefficient
with experimental data for the Wigley hull model and the Series 60 hull model,
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respectively. The left and right columns of Figures 5a and 5b correspond to the fixed and
free models, respectively. Numerical predictions are in fair agreement with experimental
data. Figure 5c shows the computed wave drag coefficient for the Wigley hull model
and the Series 60 hull model fixed and free, respectively. This figure shows that at
high Froude numbers (when sinkage and trim are most important) the wave drag is
appreciably larger when the model is free to sink and trim.
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Figure 3a. Convergence of computed sinkage and trim for Wigley hull model
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Figure 4a. Sinkage and trim for Wigley hull model

11
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Figure 4b. Sinkage and trim for Series 60 hull model
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Figure 5a. Wave drag coefficient for Wigley hull model
(left: fixed model, right: free model)
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Figure 5b. Wave drag coefficient for Series 60 hull model
(left: fixed model, right: free model)
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Figure 6a. Wave profiles for Wigley hull model
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Figure 6b. Wave profiles for Series 60 hull model
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Figure 7a. Wave profiles for Wigley hull model in fixed and free conditions
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Figure 7b. Wave profiles for Series 60 hull model in fixed and free conditions
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The computed wave profiles for the Wigley hull model and the Series 60 hull model
are compared with experimental data in Figures 6a and 6b, respectively. The left and
right columns of these two figures correspond to the models fixed and free to sink and
trim, respectively. The computed and experimental wave profiles are in fairly good
agreement for both fixed and free models.

Figures 7a and 7b respectively show the computed wave profiles for both ship models
fixed and free to sink and trim. The left and right sides of these two figures show the
wave profiles measured with respect to the undisturbed water level and the waterline
fixed to the hull, respectively. It can be seen that the change of wave elevation (from
the fixed to the free to sink and trim condition) with respect to the still water level is
very small. However, if the waterline in the frame fixed to the hull is considered, one
can see an increase in the wetted surface for the free to sink and trim condition.

Figures 8a and 8b show the wave patters for the Wigley hull model and the Series 60
hull model, respectively, in free to sink and trim condition. The wave patterns for each
model are plotted using the same contour level for three Froude numbers considered.
These two figures show the change of wave patterns with Froude numbers.

F=0.250 F=0.316 F=0.408

Figure 8a. Wave patterns for Wigley hull model
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F=0.18 F=0.25 F=0.32

Figure 8b. Wave patterns for Series 60 hull model

6 CONCLUSION

An unstructured grid-based, parallel free-surface solver has been extended to account
for sinkage and trim effects in the calculation of steady ship waves. The sinkage and
trim, wave profiles, and wave drag computed using the present approach are in good
agreement with experimental measurements for a mathematical hull form and a practical
ship hull form at a wide range of Froude numbers. Our numerical predictions indicate
significant differences between the wave drag for a ship model fixed in at-rest position
and free to sink and trim, in agreement with experimental observations.
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[26] Löhner, R. 1997 Automatic Unstructured Grid Generators. Finite Elements in
Analysis and Design 25, 111-134.
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