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Abstract. Continuum damage mechanics can be used to model the initiation and growth
of cracks. However, finite element analyses using standard fatigue damage formulations
exhibit an extreme sensitivity to the spatial discretisation of the problem. Nonlocal and
gradient damage formulations do not exhibit this mesh sensitivity. But the nonlocality
or gradient terms in these models require some modifications of standard finite element
algorithms for damage mechanics. In particular, care must be taken that the continuum
representation of a crack is separated from the remaining material by applying the correct
boundary conditions and remeshing the problem domain. For high-cycle fatigue analyses,
special time integration schemes are needed to limit the computational effort involved.
With these enhancements, reliable and mesh objective finite element analyses of crack ini-
tiation and growth become feasible, as is demonstrated by an application in metal fatigue.
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1 Introduction

Fracture of engineering components is often preceded by considerable changes in the
microstructure of the material they are made of. Accurate failure predictions can only be
obtained if this microstructural damage is taken into account in the fracture modelling.
This requirement has led to the development of so-called local approaches to fracture,
in which fracture is regarded as the ultimate consequence of the material degradation
process [1, 2]. In these methods, the degradation is often modelled using continuum
damage mechanics [2–4]. Continuum damage theory introduces a set of field variables
(damage variables) which explicitly describe the local loss of material integrity. A crack is
represented by that part of the material domain in which the damage has become critical,
i.e., where the material cannot sustain stress anymore. Redistribution of stresses results
in the concentration of deformation and damage growth in a relatively small region in
front of the crack tip. It is the growth of damage in this process zone which determines in
which direction and at which rate the crack will propagate. Crack initiation and growth
thus follow naturally from the standard continuum mechanics theory, instead of from
separate fracture criteria.

In the early stages of their development, local approaches to fracture were considered
particularly attractive from a computational standpoint. Damage formulations can be
fitted into nonlinear finite element algorithms and implemented in simulation codes with
relative ease and they do not seem to require the special discretisation and remeshing
techniques used in numerical fracture mechanics. It has since been found, however, that
finite element solutions of standard damage problems often do not seem to converge upon
mesh refinement [5, 6]. As a matter of fact, they do converge to a solution, but this
solution is physically meaningless as a consequence of the inability of the modelling to
properly describe the physical phenomena that take place [5,7,8]. This can be understood
if one realises that the concept of a continuous damage variable presumes a certain local
homogeneity – or at least smoothness – of the microstructural damage distribution. But
the continuum models based on this concept allow for discontinuous solutions, in which
the development of damage localises in a surface while the surrounding material remains
unaffected. This localisation of damage is in contradiction with the supposed smoothness
of the damage field and thus affects the physical relevance of the model.

A range of extensions to the conventional damage and plasticity models have been
proposed in order to regularise the localisation of deformation. Among them, the most
viable is perhaps the class of nonlocal and gradient models. Both approaches introduce
spatial interaction terms in the constitutive model, either using integral (nonlocal) rela-
tions [5,9,10] or gradients of some constitutive variable [11–15]. The additional terms have
a smoothing effect on the deformation (and damage) fields, and thus preclude localisation
in a surface. It is the aim of this contribution to investigate the impact of nonlocality
and gradient terms on the computational treatment of damage mechanics for fracture
problems. Elasticity based damage will serve as the framework of these developments
because of its conceptual simplicity.
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After a brief introduction of the nonlocal and gradient damage models, their finite
element implementation is discussed in detail. Special attention is given to the time
integration of damage growth and the numerical treatment of the continuum damage
representation of a crack. Finally, results are presented for the case of high-cycle metal
fatigue.

2 Constitutive modelling

The basis for our developments is formed by an isotropic, quasi-brittle damage model,
in which a scalar damage variable D degrades the elastic stiffness. The classical stress-
strain relation for this type of models reads [16]:

σij = (1−D)Cijkl εkl, (1)

where Einstein’s summation convention has been used and σij (i, j = 1, 2, 3) denote the
Cauchy stresses, Cijkl the standard elastic constants and εkl (k, l = 1, 2, 3) the linear
strains. The damage variable D satisfies 0 ≤ D ≤ 1. A value of D = 0 represents the
initial, undamaged material with the virgin stiffness; D = 1 represents a state of complete
loss of stiffness. It is this critical state D = 1 which is used to model a crack as a zone of
material that can no longer transfer stresses. Relation (1) does not account for permanent
deformations. This means that applications of the model are limited to phenomena in
which plastic deformations remain negligible. Two important fracture mechanisms which
satisfy this condition are quasi-brittle fracture and high-cycle fatigue. Both phenomena
will be treated here in the same elasticity-based damage framework.

The second law of thermodynamics requires that Ḋ ≥ 0, i.e., that the damage variable
can only increase. This growth of damage is related to the development of the deformation.
A scalar equivalent strain measure ε̃ is introduced for this purpose, which quantifies the
local deformation state in the material in terms of its effect on damage. In local damage
models the damage growth can be related directly to the evolution of this equivalent strain
ε̃. In the nonlocal and gradient damage formulations, however, a nonlocal equivalent
strain ε̄ enters the relationship between deformation and damage. The way in which
this nonlocal equivalent strain is connected to its local counterpart differs between the
enhanced models and will be discussed below for each of them.

Whether damage growth is possible is decided on the basis of a loading function in
terms of ε̄:

f(ε̄, κ) = ε̄− κ. (2)

The equation f = 0 defines a loading surface in strain space. For strain states within
the loading surface (f < 0) there is no growth of damage and the material behaviour is
elastic. The damage variable can only increase when the equivalent strain reaches the
threshold value κ, i.e., when f ≥ 0.

3



R.H.J. Peerlings, W.A.M. Brekelmans, R. de Borst, and M.G.D. Geers

Quasi-brittle damage can now be modelled by assuming that the strain state always
remains on or within the loading surface (f ≤ 0, cf. elastoplasticity). This means that
the threshold variable κ must satisfy the Kuhn-Tucker relations

fκ̇ = 0, f ≤ 0, κ̇ ≥ 0, (3)

which must be supplemented by an initial value κ = κ0 in order to define the initial elastic
domain [16, 17]. If, on the other hand, the loading surface is kept fixed, i.e., if κ is kept
fixed at κ = κ0, the same modelling can be used to describe fatigue failure. Strain states
beyond the loading surface (f > 0) are then allowed and the damage variable can only
increase when f > 0 and ḟ ≥ 0 [17–19].

When the appropriate conditions for damage growth are satisfied, the damage rate is
governed both in quasi-brittle and fatigue damage by an evolution law which reads in its
most general form

Ḋ = g(D, ε̄) ˙̄ε, (4)

where a superimposed dot denotes differentiation with respect to time. The dependence
of the damage growth rate on the equivalent strain rate is linear in order to avoid rate
effects. Obviously, the expressions for the evolution function g(D, ε̃) and the equivalent
strain ε̃ will be different for quasi-brittle damage and fatigue; examples are given by [17].

2.1 Nonlocal model

In the nonlocal damage model the nonlocal equivalent strain ε̄ in a point x is defined as
a weighted average of the local equivalent strain ε̃ in the entire problem domain Ω [9,20]:

ε̄(x) =
1

Ψ(x)

∫
Ω

ψ(y;x)ε̃(y) dΩ, (5)

where y denotes the position of the infinitesimal volume dΩ. The factor 1/Ψ(x), with
Ψ(x) defined by

Ψ(x) =

∫
Ω

ψ(y;x) dΩ, (6)

scales ε̄ such that it equals ε̃ for homogeneous strain states. The weight function ψ(y;x) is
assumed to be homogeneous and isotropic, i.e., it depends only on the distance ρ = |x − y|.
It is usually defined as the Gauss distribution:

ψ(ρ) =
1

(2π)3/2l3
exp

[
− ρ2

2l2

]
. (7)

The length parameter l determines the volume which contributes significantly to the
nonlocal equivalent strain and must therefore be related to the scale of the microstructure.
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2.2 Gradient formulation

For sufficiently smooth ε̃-fields, the integral relation (5) can be rewritten in terms of
gradients of ε̃ by expanding ε̃(y) into a Taylor series. After some further mathematical
manipulation and truncation of terms of order four and higher, the following gradient
approximation of (5) can be obtained [21, 22]:

ε̄− c∇2ε̄ = ε̃, (8)

where the Laplacian ∇2 is defined by ∇2 =
∑

i ∂
2/∂xi

2 and the coefficient c is given by
c = 1

2
l2. For a unique solution a boundary condition for ε̄ must be given at the entire

boundary Γ of Ω. A homogeneous natural boundary condition

∂ε̄

∂n
= 0 (9)

is usually adopted for this purpose. With this boundary condition, ε̄ equals ε̃ for homoge-
neous deformations and the gradient approximation is thus consistent with the nonlocal
relation (5) in this respect.

Instead of being defined explicitly in terms of its local counterpart ε̃, the nonlocal strain
ε̄ is now defined as the solution of the boundary value problem consisting of (8) and (9).
However, an expression equivalent to (5) can be obtained for it by formally solving the
boundary value problem [17,23]:

ε̄(x) =

∫
Ω

G(y;x)ε̃(y) dΩ, (10)

where G(y;x) denotes the Green’s function associated to the boundary value problem
(8),(9). This means that the gradient damage model based on the differential equation
(8) can be regarded as a special case of the class of (integral) nonlocal models, in which the
weight function ψ(y;x) equals the Green’s function G(y;x). Accordingly, the behaviour
of the gradient enhanced damage formulation is at least qualitatively equivalent to that
of the integral nonlocal model, see Peerlings et al. [23].

3 Finite element implementation

As a result of the partial equivalence of the integral nonlocal damage model defined
by relation (5) and the gradient formulation based on (8), their numerical treatment is
also largely parallel. A major difference, however, exists in the way the nonlocal equiva-
lent strain is computed. In the nonlocal approach the ε̄-field is defined by the averaging
operator (5) and a set of integro-differential equations is thus obtained. Reliable finite
element algorithms have been developed to solve these equations [24,25], but their imple-
mentation in standard nonlinear finite element frameworks is not straightforward. The
gradient formulation seems slightly more attractive from this point of view, since it only

5



R.H.J. Peerlings, W.A.M. Brekelmans, R. de Borst, and M.G.D. Geers

requires one additional partial differential equation to be solved simultaneously with the
equilibrium equations. This section concentrates on the implementation of the gradient
model, but many of the arguments made apply equally well to the nonlocal model. Where
relevant, differences with the nonlocal approach are pointed out.

The partial differential equations of the equilibrium problem are first discretised in
space by a finite element interpolation. The time discretisation of the problem follows
by dividing the loading history in a finite number of time increments and integrating
the growth of damage within these increments. The resulting set of nonlinear algebraic
equations is solved in each increment by an iterative process. These three steps are first
discussed below assuming that the damage is noncritical everywhere in the body, i.e., that
no crack has been initiated yet. The extension to crack growth is discussed in Section 3.4.

3.1 Spatial Discretisation

The discrete form of the equilibrium equations follows from the standard transition to
the weak form and a Galerkin discretisation of the displacements by u = Na:∫

Ω

BTσ dΩ =

∫
Γ

NTt dΓ, (11)

where the matrices N and B contain the displacement interpolation functions and their
derivatives, respectively, and the column matrices σ and t contain the Cauchy stresses
and boundary tractions. Body forces have not been taken into account, but can be added
in the standard fashion. Similar to the equilibrium equations, the weak form of equation
(8) can be discretised as [22]

∫
Ω

(
c B̄TB̄ + N̄TN̄

)
dΩ e =

∫
Ω

N̄Tε̃ dΩ, (12)

with N̄ and B̄ containing the interpolation functions of the nonlocal equivalent strain ε̄
and their derivatives and e being the column with nodal values of ε̄.

The interpolations functions in N,N̄ have to satisfy only the standard, C0-continuity
requirements and need not be of the same order. Indeed, it has been found that using
interpolation polynomials of the same order may result in stress oscillations. Their origin
is illustrated in Figure 1 for a one-dimensional problem with piecewise linear interpola-
tions of the axial displacement u and the nonlocal equivalent strain ε̄. The linearity of
the displacements within each element results in the local strain ε being piecewise con-
stant (Figure 1(a)). Since the damage rate depends nonlinearly but continuously on the
nonlocal equivalent strain, which is piecewise linear, D is continuous and nearly linear
within the elements for sufficiently small elements (Figure 1(b)). The combination of the
constant local strain and varying damage in the stress-strain relation (1) leads to a stress
distribution as shown in Figure 1(c). The stress gradient within the elements is set by the
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Figure 1: Stress oscillations caused by a linear-linear finite element interpolation.

damage gradient and the strain; oscillations are therefore observed particularly in regions
with high gradients of the damage variable and high strains. Refining the discretisation
does not lead to a decrease of the stress gradients. Indeed, it may even result in an increase
because high damage and displacement gradients can be described more accurately with
a finer mesh. Similar stress oscillations have also been observed in the integral nonlocal
model by Jirásek [25].

Although the stress field of Figure 1(c) is a perfectly valid solution of the weak equi-
librium problem, the stress oscillations may lead to serious misinterpretations and should
therefore be avoided. An obvious way to do so is by using quadratic instead of linear poly-
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nomials for the displacements, so that the strain field is no longer constant and agrees with
the linear nonlocal equivalent strain. Particularly when combined with a reduced Gauss
integration for the equilibrium equations (11) and a full Gauss integration for equation
(12), this discretisation has been found to be effective and efficient. A second possibility
is to retain the linear interpolations of the displacements and nonlocal equivalent strain,
but to define the damage variable as uniform in each element. The strain and damage are
then both piecewise constant, so that the stress is also piecewise constant. This approach
is preferred in crack growth problems, see Section 3.4.

3.2 Temporal discretisation

The time discretisation of the equilibrium problem follows by dividing the loading his-
tory into a finite number of time intervals and requiring the discrete balances (11) and
(12) to be satisfied only at the end of each interval. Assuming the complete deformation
and damage state to be known at time t, the problem then reduces to finding the displace-
ments and nonlocal strains which satisfy (11) and (12) at the end of a time increment
∆t. For this purpose the damage growth rate must be integrated from t to t+∆t. In the
quasi-brittle damage model, this integration can be carried out in closed form, resulting
in a direct relation between the damage variable Dt+∆t and e [17, 22].

In the fatigue model the damage rate cannot be integrated analytically and an approx-
imation must therefore be used. The damage variable at t+∆t can formally be written
as

D(t+∆t) = D(t) +

t+∆t∫
t

Ḋ(τ) dτ. (13)

The standard procedure would now be to approximate the right-hand side of this expres-
sion by an integration rule, e.g., by the trapezoidal rule

t+∆t∫
t

Ḋ(τ) dτ ≈ 1

2

(
Ḋt + Ḋt+∆t

)
∆t. (14)

This discrete approximation is accurate when the damage rate varies slowly within the
time increment. Under cyclic loading conditions this implies that each loading cycle must
be interpolated with a number, say O(10), of increments. The total number of increments
needed to simulate the entire fatigue fracture process would then be of the order of ten
times the fatigue life. For high-cycle fatigue simulations, involving fatigue lives of 105

cycles and more, this would clearly become impractical. For such analyses there is a need
for an approximate integration which allows to span a large number of cycles within each
time increment. The loss of resolution which is inevitable in such a procedure is acceptable
since it is usually not the precise, small growth of damage within each loading cycle which
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0
t = tN tN +∆tN t+∆t

ε̄

κ

ε̄aε̄a1 ε̄a2

Figure 2: Nonlocal equivalent strain cycles.

is relevant, but rather the more substantial changes in the damage field resulting from
larger numbers of cycles.

The evolution of ε̄ during an interval (t, t+∆t) which comprises a number of loading
cycles is shown schematically in Figure 2. It has been assumed in this figure that the
loading is proportional and fully reversed. Each loading cycle results in two maxima of
ε̄, one corresponding to the tensile part of the cycle and one to the compressive part.
Both maxima, which are denoted by ε̄a1 and ε̄a2, follow the envelope ε̄a. The integration
of the damage rate according to (13) still holds for the situation of Figure 2. However,
the integral in the right-hand side of (13) can no longer be directly approximated by (14)
because ε̄ and ˙̄ε, and thus also Ḋ, fluctuate strongly within the increment. Instead of
directly using an integration rule, the integral is formally written as a sum of integrals on
the cycles within the increment ∆t:

Dt+∆t = Dt +
N+∆N∑
n=N

tn+∆tn∫
tn

Ḋ dτ, (15)

where tn and tn +∆tn correspond to the beginning and end of cycle n, respectively, and
N and N +∆N are the number of cycles at time t and t+∆t. Taking into account that
damage growth is possible only if ε̄ ≥ κ and ḟ ≡ ˙̄ε ≥ 0 and using evolution law (4),
relation (15) can be rewritten as

DN+∆N = DN +

N+∆N∑
n=N


 ε̄a1∫

κ

g(D, ε̄) dε̄+

ε̄a2∫
κ

g(D, ε̄) dε̄


 , (16)

where it has been assumed that ε̄a1, ε̄a2 ≥ κ. Obviously, cycles in which ε̄a < κ (and thus
ε̄a1 < κ and ε̄a2 < κ) do not contribute to the growth of damage. In contrast to ε̄ and
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Ḋ, the cycle amplitudes ε̄a1 and ε̄a2 as well as the damage variable D can be assumed to
vary slowly within the increment. Thus, similar to the integration rule (14), the sum over
the cycle numbers in (16) can be approximated by the average of the integrals evaluated
at the beginning and end of the increment multiplied by the number of cycles in the
increment, ∆N :

DN+∆N = DN +
1

2

(
G(DN , ε̄N

a ) +G(DN+∆N , ε̄N+∆N
a )

)
∆N, (17)

with G(D, ε̄a) defined by

G(D, ε̄a) = 2

ε̄a∫
κ

g(D, ε̄) dε̄, (18)

while G(D, ε̄a) = 0 if ε̄a < κ or if D = 1.
Relation (17) is a nonlinear equation in terms of the damage variable DN+∆N . Solving

this equation iteratively can be avoided by using Heun’s method, i.e., by replacing DN+∆N

in the right-hand side of (17) by a predictor value Dp based on a forward Euler step:

Dp = DN +G(DN , ε̄N
a )∆N, (19)

DN+∆N = DN +
1

2

(
G(DN , ε̄N

a ) +G(Dp, ε̄N+∆N
a )

)
∆N. (20)

Since the incremental damage growth is given by relations (19) and (20) in terms of the
nonlocal equivalent strain envelope ε̄a, the equilibrium problem must be solved for this
envelope. This means that the unknowns of the problem must be interpreted as the
momentary amplitudes rather than actual values.

The accuracy of the numerically integrated damage growth increases when a smaller
step size ∆N is used in the time integration. The step size needed to meet the desired
overall accuracy is set by the strongly progressive damage growth which usually occurs
near the end of the fatigue life. For reasons of efficiency, however, larger step sizes may be
used where the damage variable varies relatively slowly (usually in the early stages of the
damage process) without compromising the overall accuracy of the analysis. Accuracy
and efficiency can be balanced by adapting the step size to the momentary development
of damage. This can be done in an objective way by estimating the error which will
be made in computing the damage growth during the time increment. Practical fatigue
damage growth relations are strongly progressive. This implies that the solution fields
associated to them diverge and thus that solutions are intrinsically unstable in the sense
that small errors are amplified and may thus become relatively large as the damage
growth progresses. Note that in numerical terms this is a matter of accuracy rather than
stability. The inherited error due to the amplified propagation of errors is believed to
be more critical than the truncation error made by using (17) and is therefore used as a
criterion for the selection of the increment size.
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In order to assess the inherited error at the end of an increment ∆N , it is assumed
that the computed value of the damage variable at N , denoted as D̃N , contains a small
error δ: D̃N = DN + δ. Substitution of this value in (17) gives the computed damage at
the end of the increment as

D̃N+∆N = D̃N +
1

2

(
G(D̃N , ε̄N

a ) +G(D̃N+∆N , ε̄N+∆N
a )

)
∆N. (21)

Linearising this relation with respect to δ and ∆N results in a first-order approximation
of the inherited error at N +∆N :

D̃N+∆N −DN+∆N ≈
(
1 +

∂G

∂D
∆N

)
δ. (22)

The increment size is now selected such that the second term in the amplification factor
equals a predefined constant η:

∆N =
η

∂G/∂D
. (23)

In principle, the derivative ∂G/∂D in (23) can be evaluated at any time within the interval
(N,N + ∆N). In practice, however, it is evaluated at time N , so that the step size can
be fixed at the beginning of the increment. Furthermore, lower and upper bounds are
imposed upon the value given by (23) in order to prevent excessively small or large cycle
increments.

3.3 Iterative scheme

The spatial and time discretisation reduce the equilibrium problem to a set of coupled,
nonlinear algebraic equations, which can be written as

f ai = f ae, (24)

Keee − f e = 0, (25)

where

f ai =

∫
Ω

BTσ dΩ, f ae =

∫
Γ

NTt dΓ, (26)

Kee =

∫
Ω

(
c B̄TB̄ + N̄TN̄

)
dΩ, f e =

∫
Ω

N̄Tε̃ dΩ. (27)

A full Newton-Raphson scheme is used to solve the set of equations (24), (25) iteratively
at the increment level. For this purpose, relations (24) and (25) are rewritten for iteration
i+ 1 as

δf ai = f ae − f i
ai, (28)

Keeδe − δf e = f i
e − Keee

i, (29)
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where e, f ai and f e have been written as the sum of their value in the previous iteration
ei, f i

ai, f
i
e and iterative corrections δe, δf ai,δf e. The variation of f e can be linearised using

δε̃ =

(
∂ε̃

∂ε

)T

B δa, (30)

where the derivative of the equivalent strain must be evaluated for ε = εi. Similarly,
changes of the internal nodal forces, δf ai, are linearised by

δσ = (1−Di)CB δa − δD CB ai, (31)

where the matrix C contains the elastic constants. If the conditions for damage growth
are satisfied, the iterative change of the damage variable follows for the fatigue model
from linearising relation (20) as

δD = q N̄ δe, (32)

with q defined by

q = 1
2

∂G

∂ε̄
∆N, (33)

where the index a of ε̄a has been dropped and ∂G/∂ε̄ must be evaluated for D = Dp.
For the quasi-brittle model relation (32) remains valid, albeit with a different definition of
q [17,22]. In both cases, the second term in (31) vanishes when the conditions for damage
growth are not met.

Using (30), (31) and (32) in (28),(29) results in the set of linear equations[
Kaa Kae

Kea Kee

][
δa

δe

]
=

[
f ae − f i

ai

f i
e − Keee

i

]
, (34)

with

Kaa =

∫
Ω

BT(1−Di)CB dΩ, Kae = −
∫
Ω

BTC εiq N̄ dΩ, (35)

Kea = −
∫
Ω

N̄T

(
∂ε̃

∂ε

)T

B dΩ. (36)

As usual, this set of equations is to be solved repeatedly, until the residue on the nonlin-
ear equations (24),(25) has become sufficiently small. Note that the tangential stiffness
matrix in (34) is fully consistent. It is nonsymmetric and has a slightly higher optimum
bandwidth than that for the local model because additional degrees of freedom have been
introduced. For the nonlocal model, these extra degrees of freedom do not appear, but
the optimum bandwidth of the consistent stiffness matrix is nevertheless higher as a result
of the nonlocality.
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3.4 Crack growth

A crack is represented in the damage model by a region of completely damaged mate-
rial. It is important to realise that the complete loss of stiffness in this region implies that
stresses are identically zero for arbitrary deformation fields. As a consequence, the equi-
librium equations are meaningless in the cracked region. This can be seen by substituting
the stress-strain relations (1) into the standard equilibrium equations

∂σij

∂xi
= 0. (37)

Using the definition of the linear strains and the right minor symmetry of the elasticity
tensor (i.e., Cijkl = Cijlk) the resulting equations can be rewritten as

(1−D)Cijkl
∂2uk

∂xi∂xl
− ∂D

∂xi
Cijkl

∂uk

∂xl
= 0. (38)

For a given noncritical damage field D(x) < 1, the displacement components uk can be
determined from this differential system and the corresponding kinematic and dynamic
boundary conditions. In a crack however, where D ≡ 1, both terms in the differential
equations vanish. Consequently, the differential system degenerates and the boundary
value problem becomes ill-posed. The crack region must therefore be excluded from
the domain of the equilibrium problem by introducing an internal boundary, on which
the condition of zero tractions and, in the gradient model, condition (9) are imposed as
boundary conditions. In the nonlocal model the integral in (5) must be limited to the
noncritical domain and the scaling factor Ψ must be recomputed accordingly. A free
boundary problem is thus obtained, in which the position of the internal boundary (the
crack front and crack faces) follows from the growth of damage.

In numerical analyses the fact that the domain of the equilibrium problem changes with
each increment of crack growth means that the problem discretisation must be adapted.
In order to avoid frequent remeshing, numerical damage analyses are often defined on
the original domain even if this domain contains a crack. The material in the crack is
given a small residual stiffness, for instance by limiting the damage variable to a value
which is slightly smaller than one, in order to avoid that the discrete equilibrium equations
become singular. It is then argued that the stresses which are still transferred by the crack
influence equilibrium only marginally if the residual stiffness is sufficiently small. This
may indeed be true in local damage models, in which the large strains in the crack do not
influence the surrounding material. But if this approach is followed for the nonlocal and
gradient damage models, the nonlocal equivalent strain maps the (nonphysical) strains
in the cracked region onto the surrounding material in which the damage variable is not
(yet) critical. This does not only result in faster growth of damage in front of the crack
and consequently in higher predicted crack growth rates, but also in damage growth at
the faces of the crack, thus causing the thickness of the cracked region to increase in an
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unrealistic way. This phenomenon has been shown for instance by Geers et al. [26], who
proposed to remove it by a transient gradient formulation, i.e., a gradient model with a
decaying internal length scale.

These difficulties are avoided here by using a rather crude remeshing method: com-
pletely damaged elements are removed from an otherwise fixed finite element mesh. The
damage variable is taken constant in each element in order to avoid partially cracked
elements, since these have been found to have a negative influence on the mesh objec-
tivity [17]. When the damage variable is critical at the end of an increment in a certain
element, this element is removed from the finite element mesh. Nodes and degrees of free-
dom which are not connected to other elements are also removed and the set of discrete
equations is resized accordingly. The increment which led to the critical damage is then
recomputed starting from the converged state in the previous increment, in which the
element was not yet cracked, so that the growth of damage in other elements is consistent
with the current configuration.

4 Application: metal fatigue

The numerical implementation of the gradient damage model has been applied to the
problem geometry of Figure 3. The thickness of the specimen is 0.5mm. A blunt notch
has been used in order to have a finite number of cycles to crack initiation, which allows
to study the initiation and propagation of a crack in the same problem. The lower edge
of the specimen is fixed in all directions, while fully reversed vertical displacement cycles
with an amplitude of 0.0048mm are applied to its top edge. The material data that have
been used in the analyses are those of 1015 steel and have been taken from Suresh [27].
See Peerlings et al. [19] for details of the damage model.

Because of symmetry, only the top half of the specimen has been modelled. The ref-

10

10

5

1

Figure 3: Problem geometry and loading conditions of the fatigue problem (dimensions in mm).
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(a)

(b)

Figure 4: Reference discretisation: (a) entire specimen and (b) refinement at the notch tip (h = 0.04 mm).

erence mesh contains a regular grid of elements with an edge length h = 0.04mm in an
area of approximately 0.65× 0.12mm2 at the notch tip, see Figure 4. The discretisation
has been successively refined in this area to h = 0.02, 0.01 and 0.005mm. Bilinear inter-
polations have been used for the displacements and the nonlocal strain and the damage
variable has been assumed piecewise constant. The integration in time has been carried
out with the explicit cycle-based scheme (19), (20) and the adaptive step size selection
algorithm, with η = 0.5 and minimum and maximum increment sizes of 1 and 105 cycles.

Figure 5 shows the crack initiation and growth process as simulated with the finest
of the four meshes. The stress concentration at the notch tip leads to a concentration
of damage in this area. At a certain stage a crack is initiated, i.e., the damage variable
becomes critical in an element which is then removed from the mesh. For continued
cycling the crack grows along the symmetry axis. The crack width decreases as the
damage zone which was formed before crack initiation is traversed. Beyond this damage
zone the crack width becomes stationary at 0.04mm, which is of the order of the internal
length

√
c = 0.1mm.

The influence of the finite element discretisation on the crack shape is shown in Fig-
ure 6, in which the final crack pattern has been plotted for the four discretisations. The
coarsest mesh (Figure 6(a)) gives a rather crude approximation of the crack shape and
overestimates the width of steady-state part of the crack because this width is smaller
than the element size. However, the h = 0.02 and 0.01mm meshes give a good approxi-
mation of the crack shape in the finest discretisation. The width of the steady-state part
of the crack does not vary between the three finest discretisations.
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Figure 5: Damage and crack growth at the notch tip in the h = 0.005 mm mesh.

Figure 7 shows the length of the crack, a, versus the number of loading cycles N for
the four meshes. For an increasingly refined discretisation the growth curves converge to
a response with a finite number of cycles to crack initiation and a finite growth rate. The
converged initiation life is approximately 4210 cycles. Immediately after its initiation,
the crack starts to grow at a relatively high rate. The rate of crack growth decreases as
the damage zone which was formed before crack initiation is traversed until it becomes
almost constant beyond this zone. This transition corresponds to the width of the crack
becoming constant (Figure 5).
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Figure 6: Final crack pattern in the (a) h = 0.04 mm, (b) h = 0.02 mm, (c) h = 0.01 mm and (d)
h = 0.005 mm meshes.

5 Concluding remarks

The example of the previous section shows that finite element analyses of crack growth
using the gradient-enhanced fatigue damage model do not suffer from the mesh sensitivity
exhibited by the local damage model, i.e., the model without nonlocal or gradient terms.
The crack grows at a finite rate and a positive amount of work is needed for it, instead
of the instantaneous, perfectly brittle behaviour of the local model [17, 19].
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Figure 7: Influence of the element size on the predicted crack growth.

A key element in obtaining reliable and mesh-objective results is the treatment of the
completely damaged region. In this region, which is the continuum damage representa-
tion of a crack, the equilibrium equations are no longer meaningful. It must therefore be
excluded from the equilibrium boundary value problem. Numerical implementations of
the enhanced damage models must reflect this separation of the cracked region from the
remaining part of the continuum. This means that the spatial discretisation of the equi-
librium problem must be adapted for each increment of crack growth. If this separation
is not made rigorously, the damage growth rate may be overestimated and nonphysical
damage growth may be predicted at the faces of the crack.

When modelling high-cycle fatigue, the large number of loading cycles renders standard
integration procedures unpractical. A special time integration scheme has been developed
to avoid this difficulty by following the deformation envelope rather than its detailed
evolution during individual cycles. Combined with an adaptive step size algorithm, this
scheme allows to simulate large numbers of cycles with an acceptable computational effort.

In the application of Section 4 the crack path is known in advance. In practical situa-
tions, however, where the location of crack initiation and the direction of crack growth are
not known in advance, adaptive spatial discretisation techniques are needed to follow the
free boundary which represents the crack and to accurately describe the high deformation
gradients at its tip. It is interesting to note that these requirements are very similar to
those of fracture mechanics and some of the techniques needed may therefore be borrowed
from numerical fracture mechanics. It is believed that by adding these elements to the nu-
merical implementation of Section 3, reliable and efficient implementations of continuum
approaches to fracture become feasible in the near future.
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