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Abstract. In this paper the comparative study of three periodic boundary conditions
formulations will be studied. The results are obtained using the finite-volume method.
The discretized governing equations is solved in a segregated manner using the SIMPLEC
algorithm. The geometry is discretized with structured cartesian staggered grids. For the
comparative study, a benchmark case will be solved. The domain is formed by two parallel
plates to which fins are attached in a staggered fashion. Stream-wise periodic variation of
the cross-sectional area causes the flow and temperature fields to repeat periodically after
a certain developing length. A mesh refinement study and the generalized Richardson
extrapolation have been adopted to evaluate the errors and the order of accuracy of each
formulation.
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1 INTRODUCTION

Periodic flow and heat transfer behavior appears in many engineering problems of
interest, such as compact heat exchangers [7], parallel plate channels with fins placed on
the opposite walls [6], transparent insulation covers with honeycomb type structures [8]
and electronic equipment cooling [5]. The characteristics of these systems allow to reduce
the calculation domains to the zones where the periodicity takes place instead of solving
the whole physical domain. Therefore, both CPU time and the required memory for the
system modeling are dramatically reduced. Many works are published about this topic. In
most of them the periodic boundary conditions are imposed transferring the information
of the variables at the outlet periodic boundaries to the inlet ones and vice versa ([6], [7]).

The proper periodic boundary conditions may depend on the studied physical phenom-
ena. Therefore, before solving any problem with periodic flow or heat transfer phenomena
a good understanding of the formulation is necessary. Otherwise, the numerical solutions
could not represent the real physical behavior.

This paper is focused on the comparison of different formulations for the periodicity
treatment based on the finite volume method. Three formulations are considered:

a) Direct Interpolation Formulation (DIF): Dirichlet boundary conditions in the pe-
riodic boundary are fixed for all the dependent variables by means of lagrangian
interpolations from the values calculated in the corresponding periodic zone.

b) Exact Position Formulation (EPF): the values of each dependent variable in the
calculation nodes of the periodic boundary are directly transferred from the cor-
responding nodes in the periodic zone. Some of these nodes are placed inside the
domain forming a false boundary.

c) Conservative Treatment Formulation (CTF): The boundary values at the periodic
boundary are calculated forcing the physical fluxes (i.e. mass, momentum and heat
fluxes) through the periodic boundary to be equal to the flux to the corresponding
section in the periodic zone. This formulation is based on the conservative interpo-
lation schemes used in the multi-block method ([1], [2]).

Numerical details on the implementation of each kind of formulation are described and
discussed.

Although a two-dimensional description is given here in order to explain the different
formulations used in a clear way, all results hereafter presented can be extrapolated to
three-dimensional problems. The results are obtained using the finite-volume method.
The discretized governing equations are solved in a segregated manner using the SIMPLEC
algorithm. The geometry is discretized with structured cartesian staggered grids.

For the comparative study, a two dimensional incompressible flow through isothermal
finned plates [6] is solved using the three periodic formulations. In this case the flow is
expected to attain, a periodic fully developed regime, in which the velocity field repeats
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itself from module to module with inverted symmetry. The errors and the order of accu-
racy of the numerical solutions for each formulation have been calculated and compared
giving criteria about the suitability of each formulation. Details about the CPU time
requirements for each formulation are also given.

2 BENCHMARK PROBLEM

The numerical work described by Kelkar et al. [6] has been chosen as benchmark
problem. The geometry considered consist of equally spaced transverse fins that are
located in a staggered arrangement on two isotherm walls of a channel, see Figure (1).
The fins have the height G which provides a partial blockage of the channel width H.
The blockage tends to increase the flow velocity and causes deflection of the main flow so
that impingement on one of the walls is created. Since the geometry contains identical
geometric modules, the flow is expected to attain, after a short entrance regime, a periodic
fully developed regime, in which the velocity field repeats itself from module to module.
The flows in the half-modules ABCD and DCEF would exhibit inverted symmetry. Thus,
it is possible to confine the computation to the half-module ABCD. The flow is assumed
to be laminar, two-dimensional and fluid properties to be constant.
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Figure 1: Geometry of the benchmark problem.

The primary issue of concern for any periodic boundary condition formulation is to
choose a proper “periodic unit”. Figure (2) shows the discretized “periodic unit” for
benchmark problem. It is important to point out that difference between “periodic unit”
and “numerical domain”.

The “numerical domain” accounts for the periodic zone and on additional zone of the
outlet. According to the nomenclature used in the multi-block method, this zone will
be called “overlapping zone”. At least two control volumes (in the flow direction) are
necessary in this zone. Otherwise convergence problem may occur.

Boundary conditions in the inlet and outlet periodic boundary will be fixed for the
velocity field, the temperature and pressure. These boundary conditions must take into
account out of the inverted periodicity of the flow but also the pressure drop and the
temperature increase because of the heat exchange within the module, see Table 1.
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Figure 2: Illustration of the “numerical domain”.

VARIABLE BOUNDARY CONDITION
Velocity U(0, y) = U(L, H − y)

V (0, y) = −V (L, H − y)
Temperature [T (0, y)− Tw]/[Tb(0)− Tw] =

[T (L, H − y)− Tw]/[Tb(L)− Tw]
Pressure P (x, y) = −βx + P ∗(x, y)

Table 1: Boundary condition for the benchmark problem.

The pressure drop in the module is consider by means of the coefficient β and the
respective distance between periodic positions. Details on the physical meaning of this
case can be found in Kelkar et al. [6].

3 NUMERICAL FORMULATION

Three different numerical formulations are used in this work for the treatment of the
boundary conditions using the finite-volume method with a staggered grid arrangement.
Hereafter a description of each formulation is given. Details about the implementation of
them in the code are pointed out.

3.1 Direct Interpolation Formulation (DIF)

Dirichlet boundary conditions in the periodic boundary are fixed for the velocity field
and the temperature by means of interpolations from the values calculated in the corre-
sponding periodic zone. As a staggered grid arrangement is used, the velocity component
in the normal direction to the periodic boundary is directly transferred from outlet to
inlet periodic nodes and vice versa, see Figure (3-a). On the other hand, both the peri-
odic temperature, Figure (4-a), and the tangential velocity components, Figure (3-b), are
interpolated by means of lagrangian interpolations (third accurate bi-quadratic interpo-
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lation have been used) in order to preserve the overall order accuracy of the numerical
solution [4].

inlet: U(1,j) U(3,j) inlet: V(1,j) interpolated values

interpolated values

outlet: V(nx+2,j)outlet: U(nx+1,j)
U(nx-1,j)

(a) (b)

Figure 3: Treatment of U and V for DIF formulation. (a) Staggered grid in horizontal direction, (b)
Staggered grid in vertical direction.
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interpolated values
outlet: T*(nx+2,j)
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inlet: T*(1,j) interpolated values

Figure 4: Treatment of T ∗ and P for DIF formulation on main grid.

The periodic calculation for the pressure, Figure (4-b), has been fixed at just one
internal node next to the periodic boundary. Whatever control volume at the control
volumes row next to the periodic boundary could be arbitrary chosen.

This formulation does not require any modification on the calculation of the algebraic
coefficients of the discretized equations of the internal control volumes a part from the
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treatment of the pressure at the chosen node. Therefore, the periodicity can be almost
fully imposed dealing with the equations of the periodic boundary.

3.2 Exact Position Formulation (EPF)

The values for all the variables at the periodic zone are directly transferred from cor-
responding nodes, as it is show in Figures (5) and (6).

inlet: V(2,j)
V(3,j)

V(nx,j)

outlet: V(nx+1,j)

Figure 5: Treatment of V for EPF formulation on staggered grid in vertical direction.

P(3,j)

P(nx+1,ny+3-j) = P(3,j)-�L

Linlet: T*(2,j)
T*(3,j)

T*(nx,j)
outlet: T*(nx+1,j)

(a) (b)

Figure 6: Treatment of T ∗ and P for EPF formulation on main grid.

The nodes for the velocity component normal to the periodic boundary are placed
at the boundary itself. On the other hand, nodes for the periodic temperature and the
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tangential boundary are placed inside the domain at row of control volumes close to the
boundary. Therefore, the calculation domain is reduced (with one row of control volumes
less for the outlet and inlet periodic boundary). In this formulation the periodicity of the
pressure field must be imposed at all the control volumes that belong the these control
volumes rows close to the periodic boundaries.

The corresponding algebraic equations are similar to those obtained when cyclic solvers
for the periodic treatment are used [7] transferring the periodic information in on explicit
manner instead of solving at within an implicit procedure.

3.3 Conservative Treatment Formulation (CTF)

The boundary values at the periodic boundary are calculated forcing the physical
fluxes (i.e. mass, momentum and heat fluxes) through the periodic boundary to be equal
to the flux through the corresponding section in the periodic zone, see Figure (7). This
formulation is based on the conservative interpolation schemes used in the multi-block
method ([1], [2]). The pressure is resolved as in the direct interpolation formulation
(DIF), imposing the periodicity at only one control volume at the control volume row
close to the periodic boundary.

inlet: Jw(2,j) Je(3,j)

Jw(nx,j)
outlet: Je(nx+1,j)

mass flux (1,j)

mass flux (nx+1,j)

mass flux (3,j)

mass flux (nx-1,j)

(a) (b)

Figure 7: Treatment of mass flux and J for CTF formulation. (a) Staggered grid in horizontal direction,
(b) Staggered grid in vertical direction.

4 EVALUATION OF THE ERROR AND ORDER OF ACCURACY OF
THE NUMERICAL SOLUTION

In order to evaluate the quality of the numerical solutions, the numerical error ed and
the order of accuracy p are estimated using a post-processing tool described in detail in
[1]. An h-refinement treatment is adopted. The problem is solved on different meshes
related by a mesh ratio r (in this work r = 2 and six levels of refinement are studied).

7



M. Quispe, J. Cadafalch, M. Costa, M. Soria

According to the Richardson extrapolation [3], with three solutions of a problem (φ1, φ2

and φ3) obtained on the grids h1 = h (fine grid), h2 = rh (middle grid) and h3 = r2h
(coarse grid), the order of accuracy of the numerical solution can be determined by the
following equation when the assumptions of smoothness and monotone error convergence
in the mesh spacing apply:

p =
ln(φ2−φ3

φ1−φ2
)

ln(r)
(1)

A map of the estimated order of accuracy is calculated with three consecutive mesh levels.
A single grid independent solution is also carried out. The “exact” or reference solution

is considered, and maps of errors for each refinement level are obtained. Usually, a grid-
independent numerical solution is taken as a reference or “exact” solution. Thus, a grid-
independent solution has been calculated for all the testing problems used in this article.
They have been considered the “exact” or reference solution for the error studies. Then,
the numerical normalized error maps of the same test problems solved on different grids
or numerical schemes have been carried out by:

ed(x) =| φ∗(x)− φ∗
E(x) | (2)

where φ∗(x) is the normalized solution, φ∗
E(x) is the normalized “exact” solution, and

x stands for the coordinates of the discretized nodes of the solution studied (position
vector).

In both the error map and the numerical accuracy map, as the compared meshes do not
have coinciding nodes, it has been necessary to interpolate information from the solutions.
Bi-quadratic interpolations have always been used so as not to introduce uncertainties in
the post-processing study.

The average p and the average error ed have been adopted as global estimators of the
global order of accuracy and the global numerical error. As the calculation of p requires
three consecutive mesh levels, and the h-refinement treatment has been carried out on
six levels, only three p estimators are calculated. On the other hand, the numerical error
estimations is evaluated for each level of refinement.

This post-processing tool has to be applied segregatedly on all variables of the problem.

5 RESULTS AND DISCUSSIONS

5.1 Study of the error

The evolution of the numerical errors ed was analyzed using uniform two-dimensional
grid size of (n+4)xn (with six refinement levels, n = 6, 12, 24, 48, 96 and 192). This
analysis has been carried out for all the variables. The required grid-independent so-
lutions have been obtained on a 196x192 uniform grid using SMART scheme and CTF
formulation.
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Figure 8: Evolution of the error for Ud. Left: UDS, Right: SMART.
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Figure 9: Evolution of the error for Vd. Left: UDS, Right: SMART.
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Figure 10: Evolution of the error for Td. Left: UDS, Right: SMART.

The control of numerical convergence for a time step computation is done obtaining
the normalized residual of each equation that is solved. The numerical convergence is
considered achieved when the residual of all the variables and the overall normalized
mass imbalance are below of the convergence prescribed value ε = 1.0x10−6.

The evolution of the error on EPF and CTF formulations are very good in all variables,
only some disagreements appear for the coarse grids (n = 6), where the numerical solution
is far from the grid independent solution. On the other hand, the values of the DIF
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formulation are higher that the values of the EPF and CTF, as it can see in Figures (8),
(9) and (10).

It is outstanding that the result obtained with EPF and CTF are similar when UDS
scheme is used for Ud and Vd analysis. However, when SMART scheme was used, it was
observed differences between EPF and CTF formulations, although these differences are
small, computations indicated a maximum difference of 1.16% for a grid size of 196x192 on
Ud study, and of 11.32% on Vd analysis for a grid size of 10x6. In the Td error results with
EPF and CTF exists a maximum difference for a grid size of 0.05% when UDS scheme is
used and a value of 0.06% for a grid size of 10x6 when SMART scheme is used.

5.2 Study of the order of accuracy

Tables (2), (3) and (4) show information about the evolution of accuracy of the nu-
merical solution of the Ud, Vd and Td variables, using three consecutive meshes and using
a post-processing tool based on the Richardson extrapolation [3].

The comparison between the different levels of refinement involves the hypothesis of
equality of the grid spacing. Since control volumes placed on fin zones are different to
control volumes placed between fins, some differences in the values of the estimated order
of accuracy could be expected a priori. However, good agreement is always achieved
(mainly on CTF and EPF formulation) between the values calculated with UDS and
SMART studies. All of the them are also expected values: around 1 when the convective
terms are modeled by means of the first order UDS, and around 2 for the cases with the
high order SMART scheme. The results with both the CTF and EPF formulations are
similar when UDS is used over Ud and Vd analysis. With SMART scheme exists minimum
differences.

With DIF formulation, the order of accuracy is not good, although the values are
between the limits expected in SMART scheme.

p
Grid UDS SMART

Coarse Middle Fine CTF EPF DIF CTF EPF DIF
10x6 16x12 28x24 0.6986 0.6985 -0.3423 0.7443 0.7139 -0,1125
16x12 28x24 52x48 0.4231 0.4231 0.0126 2.7710 2.7900 0.4512
28x24 52x48 100x96 0.5729 0.5729 0.2543 2.3861 2.4437 1.1256
52x48 100x96 196x192 0.6874 0.6874 0.3321 1.9813 1.6599 1.0345

Table 2: Average p value for the Ud field (Re = 100).
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p
Grid UDS SMART

Coarse Middle Fine CTF EPF DIF CTF EPF DIF
10x6 16x12 28x24 -0.176 -0.1761 -0.2452 0.9507 0.9436 -0.7344
16x12 28x24 52x48 0.5086 0.5087 0.05245 2.3438 2.3230 -0.6345
28x24 52x48 100x96 0.5953 0.5953 0.1249 1.8015 1.8325 0.8345
52x48 100x96 196x192 0.6670 0.6669 0.3834 1.7306 1.6974 1.1053

Table 3: Average p value for the Vd field (Re = 100).

p
Grid UDS SMART

Coarse Middle Fine CTF EPF DIF CTF EPF DIF
10x6 16x12 28x24 0.2474 0.1579 -0.7356 0.4630 0.4358 -0.6346
16x12 28x24 52x48 0.6127 0.6454 0.02345 1.9507 1.9719 0.03456
28x24 52x48 100x96 0.5130 0.5229 0.0456 2.2206 2.2790 0.34566
52x48 100x96 196x192 0.6150 0.6147 0.3456 2.3356 2.4223 1.2456

Table 4: Average p value for the Td field (Re = 100).

5.3 Study of ff, lc, and Nu

The plot of the friction factor ff versus n can be seen in Figure (11). The maximum
difference between values of ff when SMART scheme is used (with EPF and CTF formu-
lations) is 0.437 % in a grid size of 196x192. For UDS scheme this difference is zero, in
other words, there always exists the same results in any grid size. The values obtained
with DIF formulation present a difference of 36.48 % for a grid size of 196x192 with UDS
scheme, and of 12.41 % with SMART scheme, in relation to CTF formulation.
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Figure 11: Evolution of the friction factor. Left: UDS, Right: SMART.

The comparisons of the maximum value of normalized stream function lc are presented
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in Figure (12). Based on these comparisons, the numerical treatment of DIF formulation
generates more error on the lc than that with CTF and EPF formulations. The difference
between DIF and CTF formulation for grid size of 196x192 is 26.21 % with UDS scheme,
and 19.43 % with SMART scheme.
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Figure 12: Evolution of the maximum line current. Left: UDS, Right: SMART.

The results for Nusselt number are displayed in Figure (13). Similar conclusions ob-
tained in ff and lc analysis are found in Nu results. The difference was 28.38 % in a grid
size of 196x192 with UDS and 24.72 % with SMART scheme when DIF was compared
with CTF formulation.
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Figure 13: Evolution of the Nusselt number. Left: UDS, Right: SMART.

The cost computational required similar CPU time for CTF and EPF formulations.
For example, when a grid size of 96x92 was used with SMART scheme, CTF formulation
required 5.4 hour and EPF formulation need 5.1 hour. In the same conditions, DIF
formulation need 8.3 hour of CPU time.

The results of the ff versus Re are presented, using an array of 96x92 with irregular
spaced grid, SMART scheme and CTF formulation. In Figure (14), these values are
compared with results obtained by Kelkar et al. [6]. It was observed that the maximum
difference in friction factor was 8,63% at Re = 100.
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Figure 14: Left: Evolution of the friction factor. The values obtained with CTF formulation are comparing
to the Kelkar et.al [6] results. Center and Right: Streamline and velocity vectors for Re = 100.

6 CONCLUSIONS

The numerical results obtained show that the values of both exact position formulation
and conservative treatment formulation are very good and require similar CPU times.
The most important differences between them are found in the way of introducing the
periodic formulation in the algebraic equations. As the former uses a false boundary
involving nodes contained inside the domain, the algebraic equations in these nodes need
to be changed, while for the latter only the algebraic equations of the boundary nodes
need to be modified. On the other hand, the formulation based on direct interpolations
introduces imbalances of the physical quantities increasing the CPU time and introducing
inaccuracies in the numerical solution even when fine meshes are used.

This work demonstrates that exact position formulation and conservative treatment
formulation preserves the order of numerical accuracy and does not introduce additional
uncertainty in the numerical solution. On the other hand, the results with exact position
formulation and conservative treatment formulation are the same when UDS is used over
Ud and Vd fields comparing to the SMART results where it exists little differences.
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Nomenclature

β overall rate of pressure drop r mesh ration in the h-refinement
ed discretization error Re Reynolds number
ff friction factor t thickness of the fins
G height of the fins T temperature
H width of the channel T ∗ periodic temperature
J momentum flux through the c.v. faces Tb bulk temperature of the fluid
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L periodic longitude Td dimensionless temperature:
lc stream function normalized (T − Tw)/(Tb − Tw)
n refinement level Tw constant temperature of the walls
Nu Nusselt number U , V cartesian velocity components
nx number of c.v. in x direction Ud, Vd dimensionless velocities:
ny number of c.v. in y direction U/[(

∫
Udy)/H ], V/[(

∫
Udy)/H ]

p order of accuracy x, y cartesian coordinates
P static pressure
P ∗ periodic part of pressure
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