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Abstract. The mechanical behavior of trabecular bone specimens in tension and compression
is studied numerically via microstructural simulation. Numerically generated microstructural
geometries are used, which has similar statistical parameters as the ones calculated from
digitalized images of real bone samples. In the FE calculations, material behavior for the
continuum elements is assumed linear elastic and the possibility of cracking is introduced by
inserting interface elements along most relevant potential crack paths. Interface behavior is
given by a fracture energy-based work-softening plastic model with a coupled normal-shear
hyperbolic failure surface. Although strains in the continuum and relative displacements at the
interfaces are assumed small, large displacement capability is introduced in the FE analysis, in
order to capture buckling of cell walls and change of orientation of material bridges which
may have significant influence on the peak compressive strength and residual tensile behavior,
respectively. Calculations with and without geometric non-linear effects are performed, and
the results are compared and discussed with experimental data from the literature.
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1 INTRODUCTION

Cancellous bone tissue is an inhomogeneous porous structure. The cancellous structure is a
lattice of narrow rods and plates of calcified tissue called trabeculae, surrounded by vascular
marrow which provides nutrients and waste disposal for the bone cells (Figure 1). Due to a
progressive increase in the use of implanted bone devices, a clinical need is developing to
understand the mechanical and remodeling behaviour of bone tissue1,2,3. Detailed
understanding of complex aspects of fracture of heterogeneous materials may be improved
with explicit consideration of their microstructure. Some studies of this kind, using the FEM,
can be found in literature on concrete4,5,6 and cancellous bone7,8,9.

Figure 1. Side view of a trabecular bone specimen.

In this paper, on-going numerical research along this line, being carried out at ETSECCPB-
UPC in cooperation with Politecnico di Milano, is summarized. Preliminar studies showed
that microstructural models incorporating fracture-based interface elements similar to the ones
used for concrete, could be applied successfully to obtain the peak load and failure patterns of
the tensile behavior of cancellous bone10. Current efforts aim at incorporating non-linear
geometric effects in the FE analysis, in order to be able to capture the micro-buckling of
trabeculae in compression, and also to eliminate unrealistic residual stresses at large tensile
strains.

2 MICROSTRUCTURAL DISCRETIZATION AND MESHES

In the work presented, the computer analyses have been run on meshes generated
numerically according to the average geometric characteristics measured in real bone. A mesh
of regular hexagons has been defined as a function of some stochastic parameters, such as the
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number of hexagons in the two directions x and y, and the semi-length of the hexagon edge.
Subsequently, a distortion and shrinking of the mesh is applied to reproduce the distribution
and density of pores within the matrix. The trabecular matrix is discretized with triangular
finite elements with linear elastic behavior. The FE model mesh includes a number of zero-
thickness interface elements in between the continuum triangles. The constitutive behavior of
the interfaces is described in the following section. A 10 x 10 mm specimen is represented in
2-D by two alternative arrangements which differ in the discretization of the specimen
boundary: in one case the specimen boundary goes through the matrix, in the other the
boundary crosses voids. Figure 2 shows the two meshes with all the continuum elements (left)
and with only interface elements (right). The interface elements have been included along
selected boundaries to provide non-tortuous failure paths. Mesh 1 contains 1360 triangles,
1061 interface elements and 2736 nodes, while mesh 2 has 1336 triangles, 974 interface
elements and 2500 nodes.

Figure 2. FE discretization of trabecular architecture for mesh 1 (up) and mesh 2 (down) with all continuous
elements (left) and with only interface elements (right).
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3 INTERFACE CONSTITUTIVE MODEL

Interface behavior is formulated in terms of the normal and shear components of stresses
(tractions), σσσσ = [σN, σT]t, and corresponding relative displacements u = [uN, uT]t

(t=transposed). The model has been used for individual discrete cracks11 and for each potential
crack plane in a continuum-type multicrack model12. It conforms to work-softening elasto-
plasticity, where plastic relative displacements can be identified with crack openings. The
main features of the plastic model are represented in Figure 3. The initial loading (failure)
surface F = 0 is a three-parameter hyperbola (tensile strength χ, c and tanφ; Figure 3a). The
model is associated in tension (Q = F), but not in compression, where dilatancy vanishes
progressively for σN → σdil. Classic Mode I fracture occurs in pure tension. A second Mode
IIa is defined under shear and high compression, with no dilatancy (Figure 3b). The fracture
energies GI

f and GIIa
f are two model parameters. After initial cracking, c and χ decrease

(Figure 3d), and the loading surface shrinks, degenerating in the limit case into a pair of
straight lines representing pure friction (Figure 3c). The process is driven by the energy spent
in fracture process, Wcr = plastic work, less frictional work in compression. Total exhaustion
of tensile strength (χ = 0) is reached for Wcr = GI

f, and residual friction (c = 0) is reached for
Wcr = GIIa

f. Additional parameters αχ and αc allow for different shapes of the softening laws
(linear decay for αχ = αc = 0). The elastic stiffness matrix is diagonal with KN, KT, that can be
regarded simply as penalty coefficients. More details can be found in11.

Figure 3. Interface model: (a) failure surface and plastic potential, (b) basic modes of fracture, (c) softening laws,
and (d) evolution of the failure surface.
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4 GEOMETRIC NONLINEAR EFFECTS

Non-negligeable geometric nonlinear effects associated to large displacements and
rotations may take place in compression due to the relative slenderness of the trabeculae, and
in tension due to the remaining bridges of material at advanced stages of the decohesive
process.

In the assumption that the strains of the continuum elements and the relative displacements
of the interfaces remain small, these nonlinear effects are introduced by means of an
Incremental Lagrangian formulation of the FE method. This approximate procedure requires
small steps, but small steps have to be taken anyway in this type of analysis due to the highly
nonlinear character of the interface softening laws and the overall resulting material behavior.

Since strains remain small, there will be only two types of relevant strain and stress
measures at a point of the structure. The Lagrangian or material strains and stresses, denoted
as åmat, ó mat, would be those measured by an observer sitted on that point of the structure and
moving with it, and are those which should enter the constitutive equations. The Eulerian or
spatial stress and strain, denoted åspa, ó spa, would be those measured by an observer looking
at the structure from an outside fixed position on the axes x, y.

Using standard theory of finite deformations (see for instance13) one can express the rate of

material strains as 
•

åmat = FdF ••
T , where F = displacement gradient, with Cartesian

components Fij = ∂ xi/ ∂ Xj, and d = rate of deformation, with Cartesian components dij =

( i

•

∂u / jx∂  + j

•

∂u / ix∂ )/2. In this case, we can approximate F ≅  R, rotation of this point at the

time of interest, and for very small time increments ∆t one can also write 
•

åmat = åÄ mat/∆t, and

i

•

u  = ∆ui/∆t, which leads to:

RR •• ∆=∆ åå T
mat (1)

where åÄ  is the symmetric gradient of the (small) increments of displacements, with
Cartesian components:
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Note that this definition is analogous to that of standard small strain theory, and therefore
åÄ  also corresponds to the strain increment calculated with a standard small strain FE

program, in which the nodal coordinates have been updated to their current locations by
summing displacements to the initial coordinates.

Once material strain increments have been obtained, using the constitutive law one may
obtain material stresses, these may be then converted to spatial stresses using the push-
forward operation, which in this case may be approximated as the rotation:

)Ä,(; matmatmat
T

spa åóóó stateinitialf== •• RR (3)
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Analogous concepts and relations may be developed also for the interface relative
displacements and tractions.

Having total spatial stresses at each point of the continuum and interface elements,
equivalent nodal force contributions for each element are obtained with the traditional small
strain integral expression dV∫= óf TBel , which also holds if matrix B has been calculated
with the updated coordinates. These total nodal forces are then compared to the external
applied loads and, new residuals are obtained for the next iteration.

5 NUMERICAL RESULTS IN TENSION

The first results presented correspond to uniaxial tension, applied on the meshes with solid
boundaries (Figure 2 up). The load is applied along the y-axis. Uniform displacements are
prescribed to all nodes of the upper and lower specimen edges, while transverse displacements
are left free. Average stresses are obtained by summing nodal reactions and dividing by
specimen size. Constitutive parameters are given by the following values: E = 900MPa, ν =
0.18, and for the interface KN = KT = l09MPa/m, tensile strength χ0 = 32MPa, c0 = l00MPa,
tanφ = 0.8, GI

f = 2.2N/mm, GIIa
f = 10GI

f, σdil = 10 MPa (all other parameters equal to zero).
Note that elastic stiffnesses KN, KT for interfaces are assigned very high values compatible
with not causing numerical difficulties. The iterative strategy used is an arc length-type
procedure, in order to obtain convergence near and after the peak load6. The numerical results
obtained with and without the nonlinear geometric effects are represented in Figure 4 together
with experimental curve.
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Figure 4. Average stress-strain curves in uniaxial tension.

In Figure 5, the situation at the end of the curve with geometrically non-linear effects, is
depicted in some detail. Figure 5a shows the fracture energy spent (Wcr) at every interface
integration point. In Figure 5b, the deformed mesh at that same stage is represented.

Figure 5. Final state in uniaxial tension with non-linear geometric effects, in terms of energy spent at interfaces
(left) and deformed mesh (right). Magnification factor = 2.

The failure pattern observed is as expected approximately horizontal, which agrees with
commonly observed crack patterns in tension.

One clear consequence of including non-linear geometric effects in the analysis is that the
resulting average stress-strain curve really decreases to zero for large prescribed tensile strain,
(similar to what the experimental curves show), while without those effects it tends to an
unrealistic horizontal plateau with apparent “residual friction” (Figure 4). This is due to the
bridges of material between the two separating sides, which in linear geometric analysis are
implicitly assumed to remain with their original orientation, while in reality they may be
experiencing significant rotations. Shear and normal stresses on the interfaces may therefore
be not captured adequately.

6 NUMERICAL RESULTS IN COMPRESSION

Figures 6 and 7 depict the results obtained with the mesh without solid boundary (Figure 2
down), subjected to uniaxial compression along vertical axis y. The parameter values used are:
E = 2600MPa, ν = 0.2, and for the interface KN = KT = l09MPa/m, tensile strength χ0 =
10MPa, c0 = 60MPa, tanφ = 0.6, GI

f = 0.5N/mm, GIIa
f = 10GI

f, σdil = 10 MPa, αdil
σ = -3, and all

other parameters equal to zero. In Figure 6, the macroscopic  average stress-strain curves, with
and without considering non-linear geometric effects, are represented together with
experimental results14. The curve for large displacement formulation is stopped at the point
reached by the on-going calculations at the time of delivering this paper.
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Figure 6. Average stress-strain curves in uniaxial compression.

Figure 6, clearly shows that not considering large displacements may lead to unrealistically
high compression peak loads (or no peak at all in some cases), even if nonlinear material laws
with softening are considered. The curve calculated with non-linear geometric effects looks
much more realistic, if compared with the experimental one, with a clear tendency to a
horizontal plateau.

Figure 7 depicts the details of an intermediate and advanced states of uniaxial compression
(points A and B in previous curve), in terms of the fracture energy spent in interfaces (left)
and deformed mesh (right). In the latter, a clear pattern of void crushing may be observed.
However, careful examination of both pictures shows a new limitation. Mesh overlaps are
clearly appearing in a few areas marked by circles, which correspond to the interfaces with the
largest shear relative displacements (since GIIa

f is much higher than GI
f, energy spent in shear

quickly overtakes the energy that can be spent in tension). This would be physically
unacceptable, and therefore to proceed further with the compressive loading, we may need to
address the problem of new contacts forming between initially unrelated elements around the
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perimeter of each void. This remains the next challenge to take up in the ongoing study.

Figure 7. Intermediate (up) and final state (down) in uniaxial compression with non-linear geometric effects,
in terms of energy spent at interfaces (left) and deformed mesh (right). Magnification factor = 1.5.

7 CONCLUDING REMARKS

A micromodel initially developed and successfully verified for concrete analysis, is now
being applied to cancellous bone. For this application, the model has required further
development in order to include the effects of large nodal displacement (while strains in the
continuum and relative displacements in interfaces are assumed to remain small). The results
obtained seem reasonable and fit qualitatively well the experimental curves in tension, where
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spurious residual stresses which were observed with the geometrically linear analysis, can be
successfully eliminated. In compression, the large displacement formulation implemented also
allows us to proceed further in the analysis, with a clear tendency to a horizontal plateau. This
considerably improves the always-increasing response of the geometrically linear theory.
However, in this loading case we reach a new limitation when mesh overlaps start to appear at
the ends of highly sheared interface elements.
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