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Abstract. In this work, multigrid procedures for the h and p versions of the FEM are
discussed. Multigrid methods have an optimal solution cost for linear elliptic problems.
In this work, non-nested h-approximation spaces and algebraic multi-p methods are used.
For the p finite element version, the approximation spaces are nested and correspond
to the nested meshes commonly used in multigrid methods. For h and hp variants, the
approximations are non-nested and quadtree and octree data structures are used to map
mesh information between two levels. Examples of linear elasticity and Poisson’s problems
are presented to demonstrate the suitability of the proposed multigrid methods.
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1 INTRODUCTION

The application of the Finite Element Method (FEM) [1] for solving linear elliptic
problems requires the solution of the following system of equations,

Au = b (1)

where A is a symmetric matrix of order N ; u and b are the vectors of unknown and
independent terms, respectively. For the solution of (1), direct, iterative and multigrid
algorithms are usually applied [1, 2, 5].

Basically, h-multigrid methods use several meshes for solving (1), applying elements
like nested iterations, coarse grid correction, transfer operators and relaxation schemes.
Multigrid methods have as the main feature a theoretical linear asymptotic cost O(N)
for the solution of (1).

Traditionally, multigrid methods have been used with nested meshes, which simplify
transfer operators, mesh generation, definition of adaptive refinement criteria [5, 15, 18]
and convergence for some class of problems [6, 11, 16]. However, engineering problems
have complex geometries, which make it difficult to generate a sequence of truly nested
meshes, therefore making the use of non-nested h-approximation spaces an interesting
option. Adaptive multigrid algorithms [3] were also developed using the Zhu-Zienkiewicz
error estimator [22], adaptive analysis and automatic mesh generation [8, 9].

As another strategy to overcome the problem of generating truly nested meshes, alge-
braic multigrid methods have been proposed. Some of this methods employ the p-version
of the FEM and are called multi-p methods [12, 13]. In this case, the sequence of approx-
imating finite element spaces are naturally nested and the whole algorithm uses just one
mesh.

This paper presents concepts related to h and p-multigrid methods. Initially, a brief
introduction to the principal elements of multigrid methods for the h and p versions of
the FEM is presented. Results for linear elastic problems solved by h-multigrid methods
are presented. For the p-version of the FEM, the choice of the basis functions is very
important to reach a good condition number of the global matrix. Experiments for some
set of functions are presented for the solution of the Poisson’s problem.

2 h-MULTIGRID METHODS

Multigrid methods employ some elements such as nested iterations, coarse grid correc-
tion and transfers operators.

The nested iteration scheme is used to get a better initial fine mesh solution for an
iterative method. It is well known that the performance of an iterative procedure can
be improved by using a better initial approximation obtained, for example, by relaxation
on a coarser mesh. As the number of unknowns on the coarser mesh is smaller, the
computational cost for one relaxation is also much smaller than one on the finer mesh.
The following scheme, called nested iterations, obtains a better approximation for the
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solution of the finest mesh [6]:

Relax on Au = b on the coarsest mesh
...

Relax on Au = b on Ωk−2 to obtain an initial approximation for Ωk−1

Relax on Au = b on Ωk−1 to obtain an initial approximation for Ωk

Relax on Au = b on Ωk to obtain a final approximation to the solution u.

Let v be an approximation for the solution u of (1). The residual equation Ae = r
defines a relation between the algebraic error e = u− v and the residual r = b− Av and
allows iterations on the error e. Relaxing on (1) with some approximation v is equivalent
to iterating on the residual equation, where e = 0 is the initial approximation. The coarse
grid correction scheme is defined in the following way [6]:

Relax on Au = b on Ωk to obtain an approximation vk

Compute the residual r = b−Avk

Relax on Ae = r on Ωk−1 to obtain an approximation to the error ek−1

Correct the approximation obtained on Ωk with the error estimate on Ωk−1 : vk ← vk + ek−1

The concepts discussed previously are based on transferring functions between coarse
and fine meshes. For this purpose, transferring operators must be defined.
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Figure 1: Restriction and prolongation operators.
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The first operator, denoted by Ikk−1, transforms functions from the coarse mesh Ωk−1

to the fine mesh Ωk and is called an interpolation or prolongation operator. It is used
to map the error ek−1 or the initial approximation vk−1 from the coarse mesh to the fine
mesh. The restriction operator Ik−1

k maps functions from the fine mesh Ωk to the coarse
mesh Ωk−1, as in the case of the residual projection rk onto Ωk−1.

For nested meshes, the simplest types of restriction are injection and weighting op-
erators [6]. In this paper, however, non-nested h-meshes are considered. Taking a
two-dimensional domain discretized by linear triangles, the restriction and prolongation
operators are defined using the element shape functions expressed in area coordinates
Ai (i = 1, 2, 3). Figure 1 shows the operators for linear triangles. For each finer node I,
one needs to know the coarser element Tg in which node I is contained and the respective
values of the shape functions calculated on the local coordinates of I. For this purpose,
efficient quadtree and octree data structures have been used [8].

Using the notation indicated in Figure 1, the restriction operator computes the residual
for each node of the triangle Tg by taking the contribution of all finer nodes contained in
Tg:

ri = Ik−1
k rk =

Nf∑
l=1

AI
i r

I
l i = 1, 2, 3 (2)

where Nf is the number of finer nodes I in Tg with residual rI and area coordinates AI .
Analogously, the mapping of the error ek−1 on Ωk−1 to finer mesh Ωk is based on an

interpolation using the shape functions of element Tg:

eI = Ik−1
k ek−1 =

3∑
l=1

AI
l e

l (3)

The same procedures can be extended to three-dimensional examples discretized by
linear tetrahedral using volume coordinates. A variational description of the restriction
and prolongation operators is presented in [4].

Figure 2 shows some commonly used multigrid strategies. Cycles V and W are based
on the recursive application of the coarse grid correction scheme. Basically, when going
from a finer mesh Ωk to a coarser mesh Ωk−1, ν1 pre-relaxations are executed on the
original equation Au = b or on the error equation Ae = r, and residual r is calculated and
projected on mesh Ωk−1 using the restriction operator Ik−1

k . In the coarsest mesh, the error
equation is solved by a direct or iterative numerical method. Finally, corrections e are
mapped to the other levels using the prolongation operator Ikk−1, and ν2 post-relaxations
are executed on each mesh.

The FMV algorithm uses the concept of nested iterations. Each V cycle is preceded by
one or more smaller V cycles, according to the value of parameter ν0. Equation Au = b is
solved in the coarsest mesh and its solution is prolonged as an initial approximation to the
next level. Then ν0 V cycles are executed, ultimately obtaining a better approximation
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Figure 2: Multigrid strategies.

to the next mesh. This procedure is repeated until reaching the finest mesh. The FMW
technique uses smaller W cycles to obtain a better initial approximation to a next level
and is analogous to the FMV cycle. These procedures are illustrated in Figure 2 for
ν0 = 1.

3 MULTI-p METHODS

In the p-version of the FEM, hierarchical shape functions are used [7, 14, 19, 20, 21]. In
this case, the approximating finite element spaces Vp (including shape functions of order
≤ p) are nested, i.e.,

V1 ⊂ V2 ⊂ · · · ⊂ Vp−1 ⊂ Vp.

Similarly, the stiffness matrices and load vectors have also hierarchical structures.
Hence, if Ap and bp are the global stiffness matrix and load vector corresponding to
the shape functions of order ≤ p, the resulting algebraic sistem of equations Apu = bp can
be written as follows [

A11 A12

AT
12 A22

] [
u1

u2

]
=

[
b1
b2

]
, (4)

where A11 and b1 correspond to order ≤ p− 1, i.e., Ap−1 = A11 and bp−1 = b1.
The idea of a multigrid scheme for the p-version of the FEM, named multi-p methods

[13], derives from this hierarchical properties and the well stablished multigrid features.
In this way, the transferring operators (prolongation and restriction) for the multi-p

method are naturally defined by the injection mapping

Ipp−1 =

[
Ip−1

0

]
, Ip−1

p =
[
Ip−1 0

]
, (5)

where Ip−1 is the identity matrix of order Np−1 × Np−1 with Np = number of degrees of
freedom used in the p-discretization. It is worth noting that, according to this definition,
the transferring operators are related by

Ip−1
p = (Ipp−1)

T .
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In comparison with h-multigrid methods, the prolongation and restriction operators
are very simple and independent of the domain geometry. In addition, it is easy to verify
that the transferring operators satisfy the following relation

Ap−1 = Ip−1
p ApI

p
p−1.

The multi-p V and FMV cycles are built in analogy with the respective h-multigrid
strategies. The multi-p V cycle algorithm looks exactly like the h-multigrid V cycle. The
only difference is that the multilevel computations are conducted at levels of different
degrees of shape functions, not at different meshes. The multi-p FMV cycle also uses
the concept of nested iterations. At each ascending level, a V cycle is applied generating
an approximate solution to the equation at the next level. A standard multi-p V cycle
algorithm is presented below.

ALGORITHM: TWO-LEVEL STANDARD MULTI-p V CYCLE
Let F (u, b) be a linear stationary scheme (as Gauss-Seidel or Jacobi) in matrix form

and Ap e bp defined such as in (4).
Let an inicial guess to the problem Apu = bp be [u0

1u
0
2]
T .

1. Perform ν iterations of F (x, b) on (4) and let the solution be [uν
1u

ν
2]

T ;

2. Solve
A11u1 = b1 −A12u

ν
2 (restriction)

directly (or iteratively with inicial guess uν
1) to obtain uν+1

1 ;

3. Perform ν iterations on (4) with inicial guess [uν+1
1 uν

2]
T (prolongation) to obtain

[u2ν+1
1 u2ν

2 ]T ;

4. If the residual is within the tolerance, stop; otherwise let [u2ν+1
1 u2ν

2 ]T =⇒ [u0
1u

0
2]
T

and return to 1.

From this algorithm, it can be observed that the lower level computations improve only
components in u1. A slight modification in the algorithm leads to an imediatly extension
of the standard multi-p V cycle which also improves the components in u2. In order to do
it, it is nevessary to introduce a new step between steps 2 and 3 of the standard algorithm
as follows

MODIFIED ALGORITHM

1. idem to standard multi-p V cycle;

2. idem to standard multi-p V cycle;
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3. Perform σ iterations of F (u, b) on the following equations:

A22u2 = b2 − AT
12u

ν+1
1

with inicial guess uν
2 and let the solution be uν+1

2 ;

4. Perform ν iterations on (4) with inicial guess [uν+1
1 uν+1

2 ]T (prolongation) to obtain
[u2ν+1

1 u2ν+1
2 ]T ;

5. If the residual is within the tolerance, stop; otherwise let [u2ν+1
1 u2ν+1

2 ]T =⇒ [u0
1u

0
2]
T

and return to 1.

4 RESULTS

4.1 h-Multigrid

In this section, the behavior in terms of number of operations and memory requirements
for sparse Gaussian elimination (SGE), conjugate gradients, and multigrid is analyzed
when applied to three-dimensional linear elastic examples discretized by linear tetrahedral
meshes. A flop is defined as a single floating point operation.

For sparse Gaussian elimination on sparse matrices, it is useful to apply a symbolic
factorization procedure to determine non-zero coefficients in the matrix factors [17]. Thus,
we know in advance the total number of factored matrix coefficients to allocate. The
minimum degree renumbering procedure was used to renumber the mesh nodes in order
to reduce the fill-in [10].

For iterative and multigrid methods, the convergence criterion ‖Au− b‖2 / ‖b‖2 < ξ
with precision ξ = 10−4 was used. The iterative methods are based on conjugate gradient
(CG) with diagonal (CGD), SSOR (CGSS), and symmetric Gauss-Seidel (CGGS) pre-
conditioners. Gauss-Seidel was used as the relaxation scheme in all of the multigrid
methods.

The first example is a planar elliptic fracture problem in an infinite domain represented
by a parallelpiped. There are three meshes (see Figure 3). The second example is another
planar fracture problem in a cylindrical bar, a penny-shaped crack. There are four meshes
(see Figure 4). In the these two examples, symmetry conditions were considered. The
sequences of meshes were generated by an adaptive procedure based on the Zienkiewicz-
Zhu error estimator [22].

The mesh features for all examples are given in Table 1. This includes the numbers
of nodes, elements, and equations. For a sparse matrix, the table includes both the
total number of coefficients for the entire matrix and the average number of coefficients
per row. Where relevant, numbers for direct (NCoefdir, mdir) and iterative/multigrid
(NCoefite, mite) methods are included.

Figures 5 and 6 illustrate the results in terms of the number of operations and the mem-
ory space requirements. The solution on the coarsest meshes was obtained by the CGGS
method. The high factorization cost on these meshes affects the multigrid performance
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as illustrated in Figures 5(c) and 5(d). The number iterations on the finest mesh for the
fracture problems is based on using CGGS on the coarsest meshes. The FMW results for
the cylinder example, however, were obtained by using sparse Gaussian elimination on
the coarsest mesh.

Figure 3: Meshes for the parallelpiped example (E = 2.1× 105; ν = 0, 3).

Figure 4: Meshes for the cylinder example (E = 2.1× 105; ν = 0, 3).

Iterative techniques are better in three-dimensional problems due to the smaller de-
mand for memory. The acceleration obtained by using multigrid is significantly superior in
terms of the number of operations when compared to conjugate gradient-based methods.
The increase in memory space caused by multigrid methods is not significant. This allows
all data used in the solution process to be loaded into main memory. For linear problems,
multigrid is significantly superior to the iterative algorithms based on the conjugated
gradient technique. Multigrid is also superior to direct sparse Gaussian elimination.

4.2 Multi-p

As mentioned previously, the selection of the shape functions is very important for
the p-version of the FEM to reach sparsity and good conditioning of the global matrix.
These feature affects strongly the behavior of the iterative and multigrid methods for the
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Parallelepiped

Mesh Nodes Elements Equations mdir NCoefdir mite NCoefite

1 4228 19871 11365 327.0 3716698 19.5 221037

2 9241 44015 25184 422.0 10627486 19.8 495535

3 27652 139348 77862 786.0 61196124 20.5 1596409

Cylinder

Mesh Nodes Elements Equations mdir NCoefdir mite NCoefite

1 1810 7599 4630 179.4 830385 18.0 83141

2 7753 36746 20933 428.2 8962786 19.6 409267

3 22670 114634 63778 792.9 50566338 20.5 1309692

4 46982 238546 133471 959.3 128036645 20.6 2746298

Table 1: Mesh attributes.
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Figure 5: Number of operations.
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solution of the systems of equations. In this paper, results obtained for five sets of p-shape
functions will be presented. The multi-p methods have been implemented and the results
will be presented during the congress.

The Poisson’s problem ∇2u + f = 0 with Dirichlet boundary conditions was solved
for a square and a L-shaped domains. The source term was selected in such way to have
pronounced local variations on the solution u.

Figure 7 shows the number of iterations of the standard CG and diagonal CG versus
the polynomial order for the five sets of p-shape functions [7, 14, 19, 20, 21] used in the
solution of the square and L-shaped domains.

It can be observed that the shape functions proposed by Webb [21] have the best
behaviour in terms of the number of iterations for the solution of the systems of equations.
This behavior is compatible with the results obtained for the local element matrices using
the same sets of shape functions [14]. Based on these results, the Webb’s functions have
been used to implemented the multi-p methods.
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(a) Square domain (CG).
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(b) Square domain (DCG).
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(c) L-shaped domain (CG).
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Figure 7: Number of iterations versus polynomial order.
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