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ABSTRACT 

Cement-based materials are partially saturated, porous media gaining strength and 
stiffness in the course of the hydration process, i.e., during the chemical reaction 
between anhydrous cement and water. Inelastic material behaviour of concrete such as 
viscoelasticity (time-dependent deformation under sustained loading) and autogenous 
shrinkage [bulk deformation of the (closed) cement-based material system associated 
with capillary depression of the pore liquid] are strongly affected by the extent of the 
hydration reaction. Unlike material models formulated exclusively at the macroscopic 
scale of observation, the multiscale model proposed in this paper (see Figure 1) allow 
the explicit link of the complex macroscopic behavior of concrete to its origin at finer 
scales of observation with a sound physical/chemical basis of the employed constitutive 
laws at these finer scales.  
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Figure 1: Scales of observation for upscaling of creep and shrinkage properties of early-
age cement-based materials [l = size of representative volume element (RVE)] 



 

 
Hereby, the finer-scale composition (and its history) is a function of the hydration 
reaction and accessible through recently developed hydration models for the main 
clinker phases in ordinary Portland cement (OPC). Nanoindentation (NI) is employed 
for experimental characterization of cement-based materials at the micrometer range 
[8,5,10] (see Figure2). 
 
 
 
Hereby, the creep behavior of calcium-silicate-hydrates (CSH) is found to be of 
logarithmic type [6], characterized by a creep compliance proportional to 
ln(1+t/τv), where τv denotes the characteristic time of the underlying creep process. In 
fact, the corresponding model response agrees very well with the obtained NI-test 
results. Whereas elastic material behavior is considered for hydrostatic loading, the 
viscoelastic deviatoric creep compliance function  
 

 
 

is introduced, defining the time-dependent behavior of CSH at the micrometer range. 
Hereby, μ [Pa] denotes the shear modulus (as given from the unloading curve of NI-test 
data [4]), and J v,dev [Pa-1] and τ v,dev [s] are creep-compliance parameters to identify (see 
Figure 2). 
 
With the parameters of the logarithmic-type model at hand, classical homogenization 
schemes for elastic properties based on continuum micromechanics, e.g., the Mori-
Tanaka scheme, are used for upscaling of information towards the macroscale. For this 
purpose, the extension of the Mori-Tanaka scheme towards consideration of (i) 
eigenstresses for upscaling of autogenous-shrinkage deformations [7] and (ii) 
viscoelastic behavior of CSH for upscaling of creep properties [9] was required. As 
regards the latter, the Laplace-Carson transformation of the Mori-Tanaka scheme is 
employed, considering the aforementioned logarithmic-type creep of CSH. In contrast 
to upscaling of elastic and viscoelastic properties, upscaling of strength properties is 
characterized by a localized mode of material failure. This type of failure is well 
captured by the discretized form of limit analysis which has recently  been proposed for 
upscaling of strength properties of hierarchically organized building materials [1,2]. 
 
Finally, the proposed multiscale model is employed to specify the early-age properties 
of shotcrete within a so-called hybrid analysis of a shotcrete tunnel lining [3], allowing 
consideration of the actual mix design and the conditions at the construction site. The 
performed hybrid analysis provides access to the level of loading of the tunnel lining. 
Thus, by using the developed multiscale model in structural analyses, the actual 
composition and (microstructural) loading of early-age concrete can be considered. 
Moreover, since the link between the macroscopic behavior of the material and its 
composition is established, performance-based optimization of the mix design is 
possible. 
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Figure 2: Spatial distribution and frequency distribution of (a) Young's modulus E and 
(b) creep parameter J v,dev obtained from nanoindentation tests (grid-indentation with 20 

x 20 indents and distance between adjacent grid points of 5 μm on OPC paste 
characterized by w/c=0.4 and a Blaine fineness of 3890 cm2/g) 
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