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ABSTRACT

The effect of the contact forces on the global and local dynamics of the drifting impact oscillators
introduced in [1] is examined in this paper. The oscillator has been extensively studied in our earlier
investigations. In particular, the drift was seperated from the bounded dynamics [2] and the five dimen-
sional flow was reduced to one dimensional iterative map [3].

The current work builds upon previous studies by Pu̇st and Peterka [4] and Muthukumar et al [5].
In [4] the nonlinearity of restoring forces between solid bodies is modelled as function of the defor-
mation and velocity for non-drifting impact oscillators where the free and forced vibration of systems
with Hertz contact were considered, while [5] uses a Hertz contact force model, which incorporates
non-linear hysteresis damping, to simulate pounding, a phenomenon which occurs during the collision
of building structures in earthquakes.

Three models are considered in the current study, namely the Kelvin-Voigt (KV), the Hertz stiff-
ness (HS) and nonlinear contact stiffness and damping (NSD) models. The Kelvin-Voigt model was
studied extensively in our previous work (e.g. [1–3]) and is a reference for the current two models. In
the HS model, the contact force is a sum of spring force obeying the Hertz’s law and a linear damping
force. The NSD model presents the contact forces as a combined effect of Hertz’s spring and a nonlinear
hysteresis damping element. The equations of motion of the different models are written concisely in
terms of dimensionless displacements and time:

x′ = y, (1)

y′ = a cos(ωτ + ϕ) + b− P1P2(1− P3)L1(z, v, z′)− P1P3, (2)

z′ = P1y − (1− P1)L2(z, v)/2ξ, (3)

v′ = P1P3P4(L3(z, v)/2ξ + y). (4)

where x, z and v are the displacement of the mass, slider top and bottom respectively. y is the mass
velocity, g the initial gap between the mass and top slider, a is the amplitude of the dynamic force, b is
the static force and P1, P2, P3 and P4 are Heaviside functions defined as:

P1 = H(x− z − g), P2 = H(L2(z, v)), P3 = H(L2(z, v)− 1), P4 = H(v′).



KV HS NSD
L1(z, v, z′) 2ξz′ + z − v 2ξz′ + (z − v)3/2 (2ξz′ + 1)(z − v)3/2

L2(z, v) z − v (z − v)3/2 1
L3(z, v) z − v − 1 (z − v)3/2 − 1 1− (z − v)−3/2

Table 1: Definition of functions L1, L2 and L3.
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Figure 1: (a) Time histories computed for a = 0.3, ξ = 0.05, ω = 0.1, g = 0.02 and b1 = 0.1 (blue),
b2 = 0.125 (red), and b3 = 0.15 (black). (b) Poincaré sections constructed for a = 0.3, ξ = 0.1, ω =
1.4, g = 0.02 and b = 0.1 for HS (red) and NSD (black) models.

Functions L1(z, v, z′), L2(z, v), and L3(z, v) are defined in Table 1 for each contact force model.

The nonlinear dynamics analysis reveals very different local and global behaviour. Fig. 1(a) shows
the time histories for three different values of static force b. It is evident that the simplest, i.e. KV model
adequately predicts the short-term (local) dynamics as all the three sets of dynamic responses are almost
indentical. The long-term behaviour is however dependent on the type of model as shown in Fig. 1(b)
where the Poincaré maps for the HS and NSD model are compared. We note that the attractor for the
KV model is topologically the similar to that of the HS model.
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