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ABSTRACT

Let Ω ⊂ R
2 be a bounded polygonal domain, f ∈ L2(Ω) and ϕ ∈ H2(Ω). Consider the model problem

of finding u ∈ H1(Ω) such that

−∆u = f in Ω, (1a)

u = ϕ on ∂Ω. (1b)

In this talk we discuss a weakly over-penalized symmetric interior penalty (WOPSIP) method for (1)
introduced in [1,2]. Let Th be a simplicial triangulation of Ω and Vh be the discontinuous P1 finite
element space associated with Th, i.e.,

Vh = {v ∈ L2(Ω) : v
T

= v
∣

∣

T
∈ P1(T ) ∀T ∈ Th}.

The WOPSIP method is to find uh ∈ Vh such that

ah(uh, vh) =

∫

Ω
fv dx + η

∑

e∈Eb

h

1

|e|3

∫

e

Π0
e [[ϕ]] · Π0

e [[v]] ds ∀ vh ∈ Vh, (2)

where
ah(w, v) =

∑

T∈Th

∫

T

∇w · ∇v dx + η
∑

e∈Eh

1

|e|3

∫

e

Π0
e [[w]] · Π0

e [[v]] ds,

Eh (respectively E b

h
) is the set of edges (respectively boundary edges) of Th, Π0

e is the orthogonal
projection from [L2(e)]

2 onto [P0(e)]
2 (the space of constant vectors on e), and η > 0 is a penalty

parameter.



The WOPSIP method satisfies, for any choice of η, quasi-optimal a priori error estimates in both the
L2 norm and the energy norm ||| · |||h defined by

|||v|||2h =
∑

T∈Th

‖∇v‖2
L2(T ) +

∑

e∈Eh

|e|‖ {{∇v}} ‖2
L2(e) + η

∑

e∈Eh

|e|−3‖Π0
e [[v]] ‖2

L2(e),

where {{∇v}} and [[v]] denote the mean of the gradient of v and the jump of v across the edge e respec-
tively. The WOPSIP method is also very easy to program and can handle meshes with hanging nodes.
Therefore it has various advantages over other interior penalty methods [3,4,5].

We will sketch the a priori and a posteriori error analysis of the WOPSIP method and also discuss
multigrid and adaptive algorithms for (2). Details can be found in [1,2,6,7].
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