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ABSTRACT

The “energy-residual-based approach” mentioned in the title consists in a thermodynamically consis-
tent procedure for the formulation of a phenomenological plasticity model of either strain gradient, or
nonlocal (integral) type. The authors have developed this procedure on the last ten years, see refs. [1] to
[9]. It seem therefore appropriate to present an update of this theory at this forum. For brevity we shell
limit ourselves to strain gradient plasticity.

The classical plasticity model taken on as a reference counterpart is the well-known generalized stan-
dard elastic-plastic material of Halphen and Nguyen (1975). This is endowed with internal variables, say
(ξ, χ), a hardening potential Ψ(ξ), and admits a finite (i.e. nondifferential hardening law as ξ̇ = H(ξ)·ξ̇,
where H = ∂2Ψ/∂ξ2 is the hardening moduli tensor. In contrast, for a strain gradient plasticity model,
while the flow rule remain formally unchanged, the hardening law changes into one shaped as a PDE
system, that is:

χ̇ = L ξ̇, in V, B ξ̇ = 0 on B = ∂V, (1)

where L is some differential operator and B some relevant boundary operator. The form taken on by
these operators essentially depend on which kind of ξ gradients are chosen in order to capture size
effects. If the gradient of ξ up to the n-th order, n ≥ 1, are used for this purpose, eq.(1) proves to be a
2n-th order PDE system with n (higher order) boundary conditions upon ξ̇ and its gradients up to the
(n− 1)-th order, either kinematic-type, or static type.

In general, however, the plastic deformation mechanism is active only in a subregion Vp ∈ V , hence
the boundary conditions of eq.(1) hold only for the external boundary of Vp, say Bp(ext), where for the
moving elastic/plastic boundary, say Bp(ins), due to the Cn-continuity of ξ across the latter boundary
the following n + 1 boundary conditions hold:

ξ̇ = 0, ∇ξ̇ = 0, . . . , ∇(n)ξ̇ = 0, on Bp(int). (2)



The extra boundary condition in eq.(2) with respect to (1)2 is required to determine the instantaneous
location of Bp(int). A central issue is how to obtain eqs.(1) and (2) in a manner consistent with the ther-
modynamics principles. The energy-residual-based gradient plasticity theory mentioned above provides
simple and effective means to do that. Indeed, this theory is builded upon a thermodynamic framework
characterized as in the following:

1. The thermodynamics principles of the local action does not hold since the material particles inter-
act not only by contact stresses and heat condition, but also by long distance energy interactions.
These are described by a scalar variable (the energy residual), say P , giving the power density
transmitted to the particle by all other particles in V . Since the intere collection of nonsimple
material particles is globally simple (i.e. constitutively insulated), then the (global) insulation
condition is satisfied, i.e. the integral of P over V is zero. In addition, since in the absence of
strain gradients the material behaves as a simple one, P must vanish correspondingly (locality
recovery condition).

2. The energy balance of the first thermodynamics principle is affected by the energy residual P ,
which in fact adds to the strain power, say σ : ε̇. In fact standard strain power is to be replaced
by σ : ε̇+ P in the energy balance equation.

3. The second thermodynamics principle (the entropy production density is nonnegative for every
material particle) and the Onsager reciprocity principle (the plastic dissipation power is a bilinear
form in terms of independent fluxes and related affinities) are accepted in their classical forms.

With the aid of this theoretical framework, a standard procedure of constitutive equation theory enables
us to derive all the pertinent restrictions upon the constitutive equations. These include, besides the
elasticity law, the constitutive expressions of the dissipation density and of the residual. as well as the
hardening law in the shape of PDE system with related higher order boundary conditions, including
those on the moving elastic/plastic boundary
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