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ABSTRACT 

In typical three dimensional elastostatic analyses encountered in engineering practice, 

the solution of simultaneous equations is by far the most time consuming computational 

task unless an alternative to Gaussian elimination on a fully populated matrix can be 

found.   The purpose of the research outlined here is to develop an alternative that 

reliably and economically solves systems resulting from the use of relatively coarse 

meshes of higher order elements, especially for finite domains with mixed boundary 

conditions or minimal constraint on displacement.   Currently, the goal is to solve 

systems of order 3000 to 60000 from around 5 to 50 times faster than a conventional 

solver, depending upon problem size.   60000 degrees of freedom corresponds to about 

5000 nine-node quadrilateral elements, and it is envisaged that analyses will be run on a 

system with about 1Gb RAM and 120Mb hard disc. 

In the proposed clustering scheme [1], advantage is taken of the decay to zero at infinity 

of kernels of the boundary integral equation.   Where there are traction unknowns, 

hypersingular equations of nodal collocation [2] are taken, to achieve the same rate of 

decay as for the integral equations written elsewhere.   An octree clustering scheme is 

constructed, with maximum cluster size currently 30 nodes.   Two system matrices are 

assembled: the matrix A which at least for smaller problems is fully populated, and a 

sparsely populated matrix A* in which submatrices corresponding to pairs of clusters 

sufficiently far apart in relation to their diameters are lumped into smaller numbers of 

coefficients.   Solution of Au = b is by the iterative scheme 
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,  until    

u
(i)
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so that the solution obtained is practically the same as that which would have been 

given by direct solution of Au = b. 

A submatrix of A* corresponding to a pair of clusters may be lumped into columns, into 

rows, or both rows and columns.   Bearing in mind the significance of bending in many 

analyses of finite domains, lumping into columns is achieved by the adoption of an 



 

approximate linear variation of displacement (or traction): 

                                               u*(η)  =  a0  +  a1 η1  +  a2 η2             

where ηj are cluster local cartesian coordinates.   Let the numbers of rows and columns 

of the submatrix be 3m and 3l respectively.   The additional degrees of freedom a0, a1 

and a2 are related to nodal displacements (or tractions) by the constraint equations 
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and l is the number of nodes of the cluster, and the subscript or superscript c denotes 

nodal value; these equations are added to the system of simultaneous equations to be 

solved.   It can be shown that lumping of 3x3 submatrices is carried out as follows. 
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To lump a submatrix into rows, 3x3 submatrices of coefficients are taken to vary 

linearly with respect to local coordinates ξj of the cluster of collocation nodes: 
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c
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c
 are coefficients of the nine weighted average equations which replace 

those of nodal collocation.   It can be shown that they are given by 
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where the subscript or superscript r denotes collocation point number. 

Column lumping has been operational for some time, whereas row lumping is in early 

stages of testing.   For around 4000 degrees of freedom, row lumping alone typically 

accelerates solution by a factor of between two and three with u
(i)
/u < 10

-5
 after less 

than ten iterations, for domains of finite and infinite extent.   With both row and column 

lumping there is a further improvement for infinite domains, but for finite domains 

some difficulties remain to be resolved.   In the longer term, a hierarchical scheme in 

which the existing small clusters are grouped into larger ones may be developed.   For 

typical coarse meshes of higher order elements, the surface patches corresponding to the 

larger clusters will include edges and corners, and linear approximate variations of 

displacement and 3x3 submatrices will not be applicable to them. 
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