STRAIN-DEPENDENCE OF THE SUPERCONDUCTING CRITICAL TEMPERATURE T_c IN Al, Nb AND Nb₃Sn CRYSTALS

*Matteo F. Salvetti¹, David M. Parks¹, Joseph Minervini² and Nicola Marzari³

¹ MIT	² MIT	³ MIT
Dept. of Mechanical Eng.	Plasma Science Fusion Center	Dept. of Material Science and
77 Massachusetts avenue	77 Massachusetts avenue	Engineering
Cambridge, MA 02139 USA	Cambridge, MA 02139 USA	77 Massachusetts avenue
mfsa@mit.edu	minervini@psfc.mit.edu	Cambridge, MA 02139 USA
dmparks@mit.edu	_	marzari@mit.edu

Key Words: *Nb*, *Nb*₃*Sn*, T_c , *scaling equations*, *strain dependence*, *Density Functional Theory*.

ABSTRACT

In the past 20 years, considerable efforts have been devoted to the construction of engineering equations that can predict the critical current density J_c of practical Nb₃Sn superconducting wires. Early studies concentrated on the J_c -dependence on temperature T and magnetic field H. In recent years, the need to adopt Nb_3Sn wires for higher-field applications has highlighted also a strong dependence of J_c on imposed strain [1,2]. Many authors have proposed modified scaling equations that take into account the presence of uni-axial engineering strains and have obtained accurate predictions in the range of small deformations [3]. Mainly, the constituents of these scaling equations are phenomenological models and experimental data fitting. Few authors have proposed novel scaling laws based on microscopic parameters but, so far, have encountered difficulties in accurately describe the required phonon dispersions and electron-phonon coupling quantities [4,5]. Since the mid-90s, Density Functional Theory (DFT) has become a tool capable of describing the dynamical properties of crystals from a full ab*initio* approach. In this paper, we present calculations of the T_c -dependence of Al and Nb crystals on pressure, uni-axial and shear strains using the DFT PWscf code from the Quantum-ESPRESSO distribution [6]. Favourable comparisons with available experimental data have been obtained and will be presented. The agreement with experiments is also paired by our calculations of lattice parameters, elastic constants and phonon dispersion curves. The modelling of the T_c -dependence on strain in Nb₃Sn crystals is complicated by sub-lattice distortions typical of the A15 structures. Consequently, computations on Nb₃Sn crystals require a significant but amenable increase in CPU time.

Recent advances in the code implementation [7] open the possibility to extend the study of the T_c -dependence on strain to unit cells characterized by an higher number of atoms and, therefore, efficiently treat the T_c -dependence on strain for the case of a Nb₃Sn crystal and, possibly, of a non-stoichiometric Nb₃Sn super-cell.

A full *ab-initio* description of the Nb₃Sn T_c -dependence on strain states will be a

valuable building block for the most recent scaling equations based on microscopic models. Furthermore, the computational study of non-hydrostatic deformations in Nb₃Sn crystals has the potential to elucidate some of the mechanisms behind the strong J_c strain-dependence observed in Nb₃Sn wires under the expected bending and transverse loading modes. DFT shows promise for fundamental predictions of strain effects on LTS superconductors in the near future.

ACKNOWLEDGMENTS

Calculations in this work have been done using the Quantum-ESPRESSO package.

REFERENCES

- L.T. Summers et al., "A model for the prediction of Nb₃Sn critical current as a function of field, temperature, strain, and radiation damage", IEEE Trans. Magn., Vol. 27, pp. 2041-2044, (1991).
- [2] J. W. Ekin, S. L. Bray and W. L. Bahn, "Effect of transverse stress on the critical current of bronze-process and internal-tin Nb₃Sn", J. Appl. Phys., Vol. 69, pp. 4436-4438, (1991).
- [3] B. Ten Haken, "Strain effects on the critical properties of high-field superconductors", Ph.D Thesis, Univ. of Twente, Enshede, The Netherlands, 1994.
- [4] W.D. Markiewicz, "*Elastic stiffness model for the critical temperature Tc of Nb3Sn including strain dependence*", Cryogenics, Vol. **44**, pp. 767-782, (2004).
- [5] S. Oh and K. Kim, "A scaling law for the critical current of Nb₃Sn stands based on strong-coupling theory of superconductivity", J. Appl. Phys., Vol. 99, pp. 033909, (2006).
- [6] S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio, S. Scandolo, G. Chiarotti, P. Focher, A. Pasquarello, K. Laasonen, A. Trave, R. Car, N. Marzari, A. Kokalj, http://www.pwscf.org/.
- [7] N. Marzari and D. Vanderbilt, "*Maximally localized generalized Wannier functions for composite energy bands*", Phys. Rev. B **56**, pp. 12 847-12 865, (1997).