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Abstract

Vesicles are droplets with arbitrary viscosity surrounded by a fluid phospholipidic mem-
brane. They constitute a simple model to describe the mechanical properties of cells. Despite
their simplicity compared to the biological systems, vesicles show an extremely rich behaviour
even in simple situations as when embedded in an external linear shear flow. Vesicle dynamics
has been studied for few years, and now the investigation is starting to address the rheological
properties of a suspension of vesicles.

A suspension of vesicles is a complex fluid, in the sense that its constitutive equation is
non newtonian and actually still unknown.

From a numerical point of view, the first technique used for simulations of vesicles is the
Boundary Integral Method, which involves the direct tracking of the membrane and is based on
the linearity of the hydrodynamical equation (Stokes law). Now this creates some difficuleties
as the advection of the grid to follow the movement of the surface, and cannot be used when the
velocity equation is not linear (as for arbitrary Reynolds number or for a nonlinear constitutive
equation of the embedding fluid).

These are the main reasons for introducing diffuse interface models in this field. The phase
field model is one of them. It is based on the introduction of an auxiliary field, the phase field,
which assumes a constant value inside the vesicle, another constant value outside and has a
rapid but continuous variation between the two regions. The position of the membrane is then
encoded in the variation of the phase field. The velocity evolution equation is then coupled to
the phase field evolution.

The advantages of this technique are the possibility to use a fixed mesh, the fact that the
membrane is not tracked directly and that topology changes do not need any special care:
they are just automatic.

The main challenges of this technique is the lack of agreed governing equations, fact due
to the arbitrarity in the definition of the phase field, and the need to compute the limit of
sharp interface, in whick the phase field becomes discontinuous across the interface, to get
quantitatively precise results. Only in this limit the phase field model reproduces the known
evolution equations for a thin interface.

To address the issue concerning the derivation of the evolution equations, a new model
has been derived, based on the thermodynamical consistency for the equations even at finite
interface thickness.

We have used the phase field model to study the rheology properties of a suspension of
vesicles in a linear shear flow. The first topic has been the study of the constraints generated
by a single vesicle. This study is not of primary importance for biological applications, where
often cells in suspension are not isolated. But it is of a big conceptual importance, because
understanding the individual behaviour is the key to link macroscopic behaviours to microsco-
pic dynamics. Moreover, for a single vesicle analytical computations are possible (and already
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done in the form of perturbation analysis) and a direct comparison with the Einstein model
of a suspension of non-interacting rigid spheres is possible.

The numerical computations have been carried out in two dimensions. Nevertheless they
show all the main caracteristics of its three-dimensional analogous. An extremely rich rheology
has been found exploring its dependence on the viscosity contrast of the vesicle. this parameter
is one of the most significative for the dynamics of the vesicle. Infact it allows to pass from
a stationary solution (tank-treading regime, where the vesicle is elongated in the flow) to a
periodic one (tumbling, where the vesicle rotates in the shear plane). Both instant and mean
values of rheological properties show behaviours that can be explained through the presence
of a membrane and the elasticity of the whole vesicle, giving a satisfactory explanation of
macroscopic rheology as a function of microscopic dynamics.
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